Cargando…

Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling

Background: Our objective was to determine an optimal dosage regimen of meropenem in patients receiving veno-arterial extracorporeal membrane oxygenation (V-A ECMO) by developing a pharmacokinetic/pharmacodynamic (PK/PD) model. Methods: This was a prospective cohort study. Blood samples were collect...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Soyoung, Yang, Seungwon, Hahn, Jongsung, Jang, June Young, Min, Kyoung Lok, Wi, Jin, Chang, Min Jung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693387/
https://www.ncbi.nlm.nih.gov/pubmed/36431106
http://dx.doi.org/10.3390/jcm11226621
Descripción
Sumario:Background: Our objective was to determine an optimal dosage regimen of meropenem in patients receiving veno-arterial extracorporeal membrane oxygenation (V-A ECMO) by developing a pharmacokinetic/pharmacodynamic (PK/PD) model. Methods: This was a prospective cohort study. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF). The population pharmacokinetic model was developed using nonlinear mixed-effects modeling. A Monte Carlo simulation was used (n = 10,000) to assess the probability of target attainment. Results: Thirteen adult patients on ECMO receiving meropenem were included. Meropenem pharmacokinetics was best fitted by a two-compartment model. The final pharmacokinetic model was: CL (L/h) = 3.79 × 0.44(CRRT), central volume of distribution (L) = 2.4, peripheral volume of distribution (L) = 8.56, and intercompartmental clearance (L/h) = 21.3. According to the simulation results, if more aggressive treatment is needed (100% fT > MIC target), dose increment or extended infusion is recommended. Conclusions: We established a population pharmacokinetic model for meropenem in patients receiving V-A ECMO and revealed that it is not necessary to adjust the dosage depending on V-A ECMO. Instead, more aggressive treatment is needed than that of standard treatment, and higher dosage is required without continuous renal replacement therapy (CRRT). Also, extended infusion could lead to better target attainment, and we could provide updated nomograms of the meropenem dosage regimen.