Cargando…
A Quasi-Intelligent Maritime Route Extraction from AIS Data
The rapid development and adoption of automatic identification systems as surveillance tools have resulted in the widespread application of data analysis technology in maritime surveillance and route planning. Traditional, manual, experience-based route planning has been widely used owing to its sim...
Autores principales: | Onyango, Shem Otoi, Owiredu, Solomon Amoah, Kim, Kwang-Il, Yoo, Sang-Lok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693430/ https://www.ncbi.nlm.nih.gov/pubmed/36433237 http://dx.doi.org/10.3390/s22228639 |
Ejemplares similares
-
The Piraeus AIS dataset for large-scale maritime data analytics
por: Tritsarolis, Andreas, et al.
Publicado: (2022) -
Maritime route and vessel tracklet dataset for vessel-to-route association
por: Iphar, Clément, et al.
Publicado: (2022) -
Leveraging extreme scale analytics, AI and digital twins for maritime digitalization: the VesselAI architecture
por: Ilias, Loukas, et al.
Publicado: (2023) -
Dynamic Maritime Traffic Pattern Recognition with Online Cleaning, Compression, Partition, and Clustering of AIS Data
por: Zhang, Yuanqiang, et al.
Publicado: (2022) -
Adaptive Information Visualization for Maritime Traffic Stream Sensor Data with Parallel Context Acquisition and Machine Learning
por: Kim, Kwang-il, et al.
Publicado: (2019)