Cargando…
Identification of Novel Antimicrobial Resistance Genes Using Machine Learning, Homology Modeling, and Molecular Docking
Antimicrobial resistance (AMR) threatens the healthcare system worldwide with the rise of emerging drug resistant infectious agents. AMR may render the current therapeutics ineffective or diminish their efficacy, and its rapid dissemination can have unmitigated health and socioeconomic consequences....
Autores principales: | Sunuwar, Janak, Azad, Rajeev K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693463/ https://www.ncbi.nlm.nih.gov/pubmed/36363694 http://dx.doi.org/10.3390/microorganisms10112102 |
Ejemplares similares
-
Using Machine Learning to Predict Genes Underlying Differentiation of Multipartite and Unipartite Traits in Bacteria
por: Almalki, Fatemah, et al.
Publicado: (2023) -
Silicon versus Superbug: Assessing Machine Learning’s Role in the Fight against Antimicrobial Resistance
por: Coxe, Tallon, et al.
Publicado: (2023) -
Molecular Modification of Fluoroquinolone-Biodegrading Enzymes Based on Molecular Docking and Homology Modelling
por: Liu, Si-cheng, et al.
Publicado: (2019) -
Molecular docking and machine learning analysis of Abemaciclib in colon cancer
por: Liñares-Blanco, Jose, et al.
Publicado: (2020) -
V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
por: Choi, Jieun, et al.
Publicado: (2021)