Cargando…
First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus
AIMS: Our objective is to identify first-trimester plasmatic miRNAs associated with and predictive of GDM. METHODS: We quantified miRNA using next-generation sequencing in discovery (Gen3G: n = 443/GDM = 56) and replication (3D: n = 139/GDM = 76) cohorts. We have diagnosed GDM using a 75-g oral gluc...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693764/ https://www.ncbi.nlm.nih.gov/pubmed/36440215 http://dx.doi.org/10.3389/fendo.2022.928508 |
_version_ | 1784837626078953472 |
---|---|
author | Légaré, Cécilia Desgagné, Véronique Thibeault, Kathrine White, Frédérique Clément, Andrée-Anne Poirier, Cédrik Luo, Zhong Cheng Scott, Michelle S. Jacques, Pierre-Étienne Perron, Patrice Guérin, Renée Hivert, Marie-France Bouchard, Luigi |
author_facet | Légaré, Cécilia Desgagné, Véronique Thibeault, Kathrine White, Frédérique Clément, Andrée-Anne Poirier, Cédrik Luo, Zhong Cheng Scott, Michelle S. Jacques, Pierre-Étienne Perron, Patrice Guérin, Renée Hivert, Marie-France Bouchard, Luigi |
author_sort | Légaré, Cécilia |
collection | PubMed |
description | AIMS: Our objective is to identify first-trimester plasmatic miRNAs associated with and predictive of GDM. METHODS: We quantified miRNA using next-generation sequencing in discovery (Gen3G: n = 443/GDM = 56) and replication (3D: n = 139/GDM = 76) cohorts. We have diagnosed GDM using a 75-g oral glucose tolerance test and the IADPSG criteria. We applied stepwise logistic regression analysis among replicated miRNAs to build prediction models. RESULTS: We identified 17 miRNAs associated with GDM development in both cohorts. The prediction performance of hsa-miR-517a-3p|hsa-miR-517b-3p, hsa-miR-218-5p, and hsa-let7a-3p was slightly better than GDM classic risk factors (age, BMI, familial history of type 2 diabetes, history of GDM or macrosomia, and HbA1c) (AUC 0.78 vs. 0.75). MiRNAs and GDM classic risk factors together further improved the prediction values [AUC 0.84 (95% CI 0.73–0.94)]. These results were replicated in 3D, although weaker predictive values were obtained. We suggest very low and higher risk GDM thresholds, which could be used to identify women who could do without a diagnostic test for GDM and women most likely to benefit from an early GDM prevention program. CONCLUSIONS: In summary, three miRNAs combined with classic GDM risk factors provide excellent prediction values, potentially strong enough to improve early detection and prevention of GDM. |
format | Online Article Text |
id | pubmed-9693764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96937642022-11-26 First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus Légaré, Cécilia Desgagné, Véronique Thibeault, Kathrine White, Frédérique Clément, Andrée-Anne Poirier, Cédrik Luo, Zhong Cheng Scott, Michelle S. Jacques, Pierre-Étienne Perron, Patrice Guérin, Renée Hivert, Marie-France Bouchard, Luigi Front Endocrinol (Lausanne) Endocrinology AIMS: Our objective is to identify first-trimester plasmatic miRNAs associated with and predictive of GDM. METHODS: We quantified miRNA using next-generation sequencing in discovery (Gen3G: n = 443/GDM = 56) and replication (3D: n = 139/GDM = 76) cohorts. We have diagnosed GDM using a 75-g oral glucose tolerance test and the IADPSG criteria. We applied stepwise logistic regression analysis among replicated miRNAs to build prediction models. RESULTS: We identified 17 miRNAs associated with GDM development in both cohorts. The prediction performance of hsa-miR-517a-3p|hsa-miR-517b-3p, hsa-miR-218-5p, and hsa-let7a-3p was slightly better than GDM classic risk factors (age, BMI, familial history of type 2 diabetes, history of GDM or macrosomia, and HbA1c) (AUC 0.78 vs. 0.75). MiRNAs and GDM classic risk factors together further improved the prediction values [AUC 0.84 (95% CI 0.73–0.94)]. These results were replicated in 3D, although weaker predictive values were obtained. We suggest very low and higher risk GDM thresholds, which could be used to identify women who could do without a diagnostic test for GDM and women most likely to benefit from an early GDM prevention program. CONCLUSIONS: In summary, three miRNAs combined with classic GDM risk factors provide excellent prediction values, potentially strong enough to improve early detection and prevention of GDM. Frontiers Media S.A. 2022-11-11 /pmc/articles/PMC9693764/ /pubmed/36440215 http://dx.doi.org/10.3389/fendo.2022.928508 Text en Copyright © 2022 Légaré, Desgagné, Thibeault, White, Clément, Poirier, Luo, Scott, Jacques, Perron, Guérin, Hivert and Bouchard https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Légaré, Cécilia Desgagné, Véronique Thibeault, Kathrine White, Frédérique Clément, Andrée-Anne Poirier, Cédrik Luo, Zhong Cheng Scott, Michelle S. Jacques, Pierre-Étienne Perron, Patrice Guérin, Renée Hivert, Marie-France Bouchard, Luigi First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title | First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title_full | First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title_fullStr | First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title_full_unstemmed | First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title_short | First Trimester Plasma MicroRNA Levels Predict Risk of Developing Gestational Diabetes Mellitus |
title_sort | first trimester plasma microrna levels predict risk of developing gestational diabetes mellitus |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693764/ https://www.ncbi.nlm.nih.gov/pubmed/36440215 http://dx.doi.org/10.3389/fendo.2022.928508 |
work_keys_str_mv | AT legarececilia firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT desgagneveronique firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT thibeaultkathrine firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT whitefrederique firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT clementandreeanne firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT poiriercedrik firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT luozhongcheng firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT scottmichelles firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT jacquespierreetienne firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT perronpatrice firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT guerinrenee firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT hivertmariefrance firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus AT bouchardluigi firsttrimesterplasmamicrornalevelspredictriskofdevelopinggestationaldiabetesmellitus |