Cargando…
LitCovid ensemble learning for COVID-19 multi-label classification
The Coronavirus Disease 2019 (COVID-19) pandemic has shifted the focus of research worldwide, and more than 10 000 new articles per month have concentrated on COVID-19–related topics. Considering this rapidly growing literature, the efficient and precise extraction of the main topics of COVID-19–rel...
Autores principales: | Gu, Jinghang, Chersoni, Emmanuele, Wang, Xing, Huang, Chu-Ren, Qian, Longhua, Zhou, Guodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693804/ https://www.ncbi.nlm.nih.gov/pubmed/36426767 http://dx.doi.org/10.1093/database/baac103 |
Ejemplares similares
-
LitCovid: an open database of COVID-19 literature
por: Chen, Qingyu, et al.
Publicado: (2020) -
Features and Limitations of LitCovid Hub for Quick Access to Literature About COVID-19
por: Arab-Zozani, Morteza, et al.
Publicado: (2020) -
LitCovid-AGAC: cellular and molecular level annotation data set based on COVID-19
por: Ouyang, Sizhuo, et al.
Publicado: (2021) -
LitCovid, iSearch COVID-19 portfolio, and COVID-19 Global literature on coronavirus disease
por: Scheinfeld, Laurel
Publicado: (2022) -
Deep Denoising of Raw Biomedical Knowledge Graph From COVID-19 Literature, LitCovid, and Pubtator: Framework Development and Validation
por: Jiang, Chao, et al.
Publicado: (2022)