Cargando…
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
The polysomnogram (PSG) is the gold standard for evaluating sleep quality and disorders. Attempts to automate this process have been hampered by the complexity of the PSG signals and heterogeneity among subjects and recording hardwares. Most of the existing methods for automatic sleep stage scoring...
Autores principales: | ElMoaqet, Hisham, Eid, Mohammad, Ryalat, Mutaz, Penzel, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9693852/ https://www.ncbi.nlm.nih.gov/pubmed/36433422 http://dx.doi.org/10.3390/s22228826 |
Ejemplares similares
-
Deep Recurrent Neural Networks for Automatic Detection of Sleep Apnea from Single Channel Respiration Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2020) -
An Improved Passivity-based Control of Electrostatic MEMS Device
por: Ryalat, Mutaz, et al.
Publicado: (2020) -
Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms
por: Ibrahim, Mariam, et al.
Publicado: (2020) -
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
por: Bresch, Erik, et al.
Publicado: (2018) -
Single‐channel EEG classification of sleep stages based on REM microstructure
por: Rechichi, Irene, et al.
Publicado: (2021)