Cargando…

Zearalenone Induces Apoptosis in Porcine Endometrial Stromal Cells through JNK Signaling Pathway Based on Endoplasmic Reticulum Stress

Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signali...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jie, Hai, Sirao, Chen, Jiawen, Ma, Li, Rahman, Sajid Ur, Zhao, Chang, Feng, Shibin, Li, Yu, Wu, Jinjie, Wang, Xichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694026/
https://www.ncbi.nlm.nih.gov/pubmed/36356008
http://dx.doi.org/10.3390/toxins14110758
Descripción
Sumario:Zearalenone (ZEA) is an estrogen-like mycotoxin characterized mainly by reproductive toxicity, to which pigs are particularly sensitive. The aim of this study was to investigate the molecular mechanism of ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) by activating the JNK signaling pathway through endoplasmic reticulum stress (ERS). In this study, ESCs were exposed to ZEA, with the ERS inhibitor sodium 4-Phenylbutyrate (4-PBA) as a reference. The results showed that ZEA could damage cell structures, induce endoplasmic reticulum swelling and fragmentation, and decreased the ratio of live cells to dead cells significantly. In addition, ZEA could increase reactive oxygen species and Ca(2+) levels; upregulate the expression of GRP78, CHOP, PERK, ASK1 and JNK; activate JNK phosphorylation and its high expression in the nucleus; upregulate the expression Caspase 3 and Caspase 9; and increase the Bax/Bcl-2 ratio, resulting in increased apoptosis. After 3 h of 4-PBA-pretreatment, ZEA was added for mixed culture, which showed that the inhibition of ERS could reduce the cytotoxicity of ZEA toward ESCs. Compared with the ZEA group, ERS inhibition increased cell viability; downregulated the expression of GRP78, CHOP, PERK, ASK1 and JNK; and decreased the nuclear level of p-JNK. The Bax/Bcl-2 ratio and the expression of Caspase 3 and Caspase 9 were downregulated, significantly alleviating apoptosis. These results demonstrate that ZEA can alter the morphology of ESCs, destroy their ultrastructure, and activate the JNK signaling via the ERS pathway, leading to apoptosis.