Cargando…
LSTM Attention Neural-Network-Based Signal Detection for Hybrid Modulated Faster-Than-Nyquist Optical Wireless Communications †
In order to improve the accuracy of signal recovery after transmitting over atmospheric turbulence channel, a deep-learning-based signal detection method is proposed for a faster-than-Nyquist (FTN) hybrid modulated optical wireless communication (OWC) system. It takes advantage of the long short-ter...
Autores principales: | Cao, Minghua, Yao, Ruifang, Xia, Jieping, Jia, Kejun, Wang, Huiqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694051/ https://www.ncbi.nlm.nih.gov/pubmed/36433588 http://dx.doi.org/10.3390/s22228992 |
Ejemplares similares
-
Faster than Nyquist signaling: algorithms to silicon
por: Dasalukunte, Deepak, et al.
Publicado: (2014) -
Capacity limit for faster-than-Nyquist non-orthogonal frequency-division multiplexing signaling
por: Zhou, Ji, et al.
Publicado: (2017) -
Design and Analysis of Multi-User Faster-Than-Nyquist-DCSK Communication Systems over Multi-Path Fading Channels
por: Dawa, Mohamed, et al.
Publicado: (2022) -
Data-Driven and Model-Driven Joint Detection Algorithm for Faster-Than-Nyquist Signaling in Multipath Channels
por: Deng, Xiuqi, et al.
Publicado: (2021) -
Optical sinc-shaped Nyquist pulses of exceptional quality
por: Soto, Marcelo A., et al.
Publicado: (2013)