Cargando…
Machine Learning Models to Predict Protein–Protein Interaction Inhibitors
Protein–protein interaction (PPI) inhibitors have an increasing role in drug discovery. It is hypothesized that machine learning (ML) algorithms can classify or identify PPI inhibitors. This work describes the performance of different algorithms and molecular fingerprints used in chemoinformatics to...
Autores principales: | Díaz-Eufracio, Bárbara I., Medina-Franco, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694076/ https://www.ncbi.nlm.nih.gov/pubmed/36432086 http://dx.doi.org/10.3390/molecules27227986 |
Ejemplares similares
-
In Silico ADME/Tox Profiling of Natural
Products: A Focus on BIOFACQUIM
por: Durán-Iturbide, Noemi Angeles, et al.
Publicado: (2020) -
Progress on open chemoinformatic tools for expanding and exploring the chemical space
por: Medina-Franco, José L., et al.
Publicado: (2021) -
Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2
por: Núñez, Marvin J., et al.
Publicado: (2021) -
Leveraging Machine Learning Models for Peptide-Protein Interaction Prediction
por: Song, Yin, et al.
Publicado: (2023) -
BIOFACQUIM: A Mexican Compound Database of Natural Products
por: Pilón-Jiménez, B. Angélica, et al.
Publicado: (2019)