Cargando…
Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem
Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hyl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694100/ https://www.ncbi.nlm.nih.gov/pubmed/36439961 http://dx.doi.org/10.1016/j.sjbs.2022.103497 |
_version_ | 1784837714084888576 |
---|---|
author | Wakchaure, G.C. Minhas, P.S. Kumar, Satish Mane, Pravin Suresh Kumar, P. Rane, J. Pathak, H. |
author_facet | Wakchaure, G.C. Minhas, P.S. Kumar, Satish Mane, Pravin Suresh Kumar, P. Rane, J. Pathak, H. |
author_sort | Wakchaure, G.C. |
collection | PubMed |
description | Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hylocereus undatus) cultivated in Deccan Plateau of peninsular India. When averaged for last 5-years, 44 % higher fruit yield (18.2 ± 1.0 Mg ha(−1)) was harvested from trees planted in trenches filled with 1:1 mixture (T-mixed) of native soil (loamy sand with 26.7 % stones (>2mm), field capacity, FC 0.20 cm(3) cm(−3); organic carbon, OC 0.17 %; Av-N 54.6 kg ha(−1)) and a black soil (clay 54.4 %; FC 0.42 cm(3) cm(−3); OC 0.70 %; Av-N 157.1 kg ha(−1)) than the recommended pit planting (12.4 ± 1.2 Mg ha(−1)). Improvements in fruit yields with trenches filled with black (T-black) and native (T-native) soil were 32 and 13 %, respectively. Yield losses (total– marketable yield) were reduced by 40, 20 and 18 % over pit method with T-mixed, T-black and T-native soil, respectively. Marketable quality attributes like fruit weight, fruit size metrics and pulp/peel content were further improved under T-mixed soil. Accumulation of total soluble solids (TSS), sugar content, phenolic and flavonoid compounds were higher in fruits from T-native soil. During storage, fruits from T-native soil and pit planting exhibited minimum physiological weight loss and retained more firmness, TSS, sugars, titratable acidity, phenolic-flavonoids contents, FARP and DPPH activities. T-mixed soil provided better hydrozone and nutrients for resilience of fruit plants while protecting from aeration problems envisaged in poorly drained black soils. With B:C ratio (1.85) and lower payback period (4-years), T-mixed soil showed superior economic viability. Therefore, soil management module of planting in trenches filled-in with mixture of native and black soils can be recommended to boost productivity of fruits from shallow soils under water scarce degraded regions without penalising agro-ecosystem. |
format | Online Article Text |
id | pubmed-9694100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96941002022-11-26 Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem Wakchaure, G.C. Minhas, P.S. Kumar, Satish Mane, Pravin Suresh Kumar, P. Rane, J. Pathak, H. Saudi J Biol Sci Original Article Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hylocereus undatus) cultivated in Deccan Plateau of peninsular India. When averaged for last 5-years, 44 % higher fruit yield (18.2 ± 1.0 Mg ha(−1)) was harvested from trees planted in trenches filled with 1:1 mixture (T-mixed) of native soil (loamy sand with 26.7 % stones (>2mm), field capacity, FC 0.20 cm(3) cm(−3); organic carbon, OC 0.17 %; Av-N 54.6 kg ha(−1)) and a black soil (clay 54.4 %; FC 0.42 cm(3) cm(−3); OC 0.70 %; Av-N 157.1 kg ha(−1)) than the recommended pit planting (12.4 ± 1.2 Mg ha(−1)). Improvements in fruit yields with trenches filled with black (T-black) and native (T-native) soil were 32 and 13 %, respectively. Yield losses (total– marketable yield) were reduced by 40, 20 and 18 % over pit method with T-mixed, T-black and T-native soil, respectively. Marketable quality attributes like fruit weight, fruit size metrics and pulp/peel content were further improved under T-mixed soil. Accumulation of total soluble solids (TSS), sugar content, phenolic and flavonoid compounds were higher in fruits from T-native soil. During storage, fruits from T-native soil and pit planting exhibited minimum physiological weight loss and retained more firmness, TSS, sugars, titratable acidity, phenolic-flavonoids contents, FARP and DPPH activities. T-mixed soil provided better hydrozone and nutrients for resilience of fruit plants while protecting from aeration problems envisaged in poorly drained black soils. With B:C ratio (1.85) and lower payback period (4-years), T-mixed soil showed superior economic viability. Therefore, soil management module of planting in trenches filled-in with mixture of native and black soils can be recommended to boost productivity of fruits from shallow soils under water scarce degraded regions without penalising agro-ecosystem. Elsevier 2023-01 2022-11-11 /pmc/articles/PMC9694100/ /pubmed/36439961 http://dx.doi.org/10.1016/j.sjbs.2022.103497 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Wakchaure, G.C. Minhas, P.S. Kumar, Satish Mane, Pravin Suresh Kumar, P. Rane, J. Pathak, H. Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title | Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title_full | Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title_fullStr | Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title_full_unstemmed | Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title_short | Long-term response of dragon fruit (Hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
title_sort | long-term response of dragon fruit (hylocereus undatus) to transformed rooting zone of a shallow soil improving yield, storage quality and profitability in a drought prone semi-arid agro-ecosystem |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694100/ https://www.ncbi.nlm.nih.gov/pubmed/36439961 http://dx.doi.org/10.1016/j.sjbs.2022.103497 |
work_keys_str_mv | AT wakchauregc longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT minhasps longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT kumarsatish longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT manepravin longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT sureshkumarp longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT ranej longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem AT pathakh longtermresponseofdragonfruithylocereusundatustotransformedrootingzoneofashallowsoilimprovingyieldstoragequalityandprofitabilityinadroughtpronesemiaridagroecosystem |