Cargando…
A New SCAE-MT Classification Model for Hyperspectral Remote Sensing Images
Hyperspectral remote sensing images (HRSI) have the characteristics of foreign objects with the same spectrum. As it is difficult to label samples manually, the hyperspectral remote sensing images are understood to be typical “small sample” datasets. Deep neural networks can effectively extract the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694134/ https://www.ncbi.nlm.nih.gov/pubmed/36433480 http://dx.doi.org/10.3390/s22228881 |
Sumario: | Hyperspectral remote sensing images (HRSI) have the characteristics of foreign objects with the same spectrum. As it is difficult to label samples manually, the hyperspectral remote sensing images are understood to be typical “small sample” datasets. Deep neural networks can effectively extract the deep features from the HRSI, but the classification accuracy mainly depends on the training label samples. Therefore, the stacked convolutional autoencoder network and transfer learning strategy are employed in order to design a new stacked convolutional autoencoder network model transfer (SCAE-MT) for the purposes of classifying the HRSI in this paper. In the proposed classification method, the stacked convolutional au-to-encoding network is employed in order to effectively extract the deep features from the HRSI. Then, the transfer learning strategy is applied to design a stacked convolutional autoencoder network model transfer under the small and limited training samples. The SCAE-MT model is used to propose a new HRSI classification method in order to solve the small samples of the HRSI. In this study, in order to prove the effectiveness of the proposed classification method, two HRSI datasets were chosen. In order to verify the effectiveness of the methods, the overall classification accuracy (OA) of the convolutional self-coding network classification method (CAE), the stack convolutional self-coding network classification method (SCAE), and the SCAE-MT method under 5%, 10%, and 15% training sets are calculated. When compared with the CAE and SCAE models in 5%, 10%, and 15% training datasets, the overall accuracy (OA) of the SCAE-MT method was improved by 2.71%, 3.33%, and 3.07% (on average), respectively. The SCAE-MT method is, thus, clearly superior to the other methods and also shows a good classification performance. |
---|