Cargando…

Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli

Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yan, Hart-Cooper, William M., Rasooly, Reuven, Carter, Michelle Qiu, Orts, William J., Gu, Yongqiang, He, Xiaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694190/
https://www.ncbi.nlm.nih.gov/pubmed/36356001
http://dx.doi.org/10.3390/toxins14110752
_version_ 1784837736826404864
author Wang, Yan
Hart-Cooper, William M.
Rasooly, Reuven
Carter, Michelle Qiu
Orts, William J.
Gu, Yongqiang
He, Xiaohua
author_facet Wang, Yan
Hart-Cooper, William M.
Rasooly, Reuven
Carter, Michelle Qiu
Orts, William J.
Gu, Yongqiang
He, Xiaohua
author_sort Wang, Yan
collection PubMed
description Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum and reversible antibiotic (guanylhydrazone disinfectant) was evaluated for its antibiotic activity and effects on Stx production and global transcription of bacteria. No Stx induction was observed in 25 Shiga toxin-producing E. coli (STEC) isolates treated with a sublethal concentration of the guanylhydrazone. A differential gene expression study comparing two guanylhydrazone-treated to non-treated E. coli strains indicated that the expression of a group of stress-responsive genes were enhanced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that guanylhydrazone treatment significantly downregulated the pathways of ribosome and flagellar assembly in both pathogenic and non-pathogenic strains and differentially regulated some pathways essential for bacteria to maintain cell shape and gain survival advantage in two strains. In addition, upregulation of antibiotic resistant genes related to the multidrug efflux system and virulence genes coding for colibactin, colicin, and adhesin was observed in strains treated with the disinfectant. The knowledge obtained in this study contributes to our understanding of the mode of this disinfectant action and facilitates our effort to better use disinfectants for STEC treatments.
format Online
Article
Text
id pubmed-9694190
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96941902022-11-26 Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli Wang, Yan Hart-Cooper, William M. Rasooly, Reuven Carter, Michelle Qiu Orts, William J. Gu, Yongqiang He, Xiaohua Toxins (Basel) Article Antimicrobials have been important medicines used to treat various infections. However, some antibiotics increase the expression of Shiga toxin (Stx). Also, the pervasive use of persistent antibiotics has led to ecotoxicity and antibiotic resistance. In this study, a newly developed broad-spectrum and reversible antibiotic (guanylhydrazone disinfectant) was evaluated for its antibiotic activity and effects on Stx production and global transcription of bacteria. No Stx induction was observed in 25 Shiga toxin-producing E. coli (STEC) isolates treated with a sublethal concentration of the guanylhydrazone. A differential gene expression study comparing two guanylhydrazone-treated to non-treated E. coli strains indicated that the expression of a group of stress-responsive genes were enhanced. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that guanylhydrazone treatment significantly downregulated the pathways of ribosome and flagellar assembly in both pathogenic and non-pathogenic strains and differentially regulated some pathways essential for bacteria to maintain cell shape and gain survival advantage in two strains. In addition, upregulation of antibiotic resistant genes related to the multidrug efflux system and virulence genes coding for colibactin, colicin, and adhesin was observed in strains treated with the disinfectant. The knowledge obtained in this study contributes to our understanding of the mode of this disinfectant action and facilitates our effort to better use disinfectants for STEC treatments. MDPI 2022-11-02 /pmc/articles/PMC9694190/ /pubmed/36356001 http://dx.doi.org/10.3390/toxins14110752 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Yan
Hart-Cooper, William M.
Rasooly, Reuven
Carter, Michelle Qiu
Orts, William J.
Gu, Yongqiang
He, Xiaohua
Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title_full Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title_fullStr Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title_full_unstemmed Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title_short Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli
title_sort effect of an eco-friendly cuminaldehyde guanylhydrazone disinfectant on shiga toxin production and global transcription of escherichia coli
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694190/
https://www.ncbi.nlm.nih.gov/pubmed/36356001
http://dx.doi.org/10.3390/toxins14110752
work_keys_str_mv AT wangyan effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT hartcooperwilliamm effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT rasoolyreuven effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT cartermichelleqiu effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT ortswilliamj effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT guyongqiang effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli
AT hexiaohua effectofanecofriendlycuminaldehydeguanylhydrazonedisinfectantonshigatoxinproductionandglobaltranscriptionofescherichiacoli