Cargando…
MT-GCNN: Multi-Task Learning with Gated Convolution for Multiple Transmitters Localization in Urban Scenarios
With the advance of the Internet of things (IoT), localization is essential in varied services. In urban scenarios, multiple transmitters localization is faced with challenges such as nonline-of-sight (NLOS) propagation and limited deployment of sensors. To this end, this paper proposes the MT-GCNN...
Autores principales: | Wang, Wenyu, Zhu, Lei, Huang, Zhen, Li, Baozhu, Yu, Lu, Cheng, Kaixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694210/ https://www.ncbi.nlm.nih.gov/pubmed/36433270 http://dx.doi.org/10.3390/s22228674 |
Ejemplares similares
-
How to Force Conformity on Transmitter-Gated Channels
por: Steinbach, Joe Henry
Publicado: (2000) -
Energetics of gating at the apo–acetylcholine receptor transmitter binding site
por: Purohit, Prasad, et al.
Publicado: (2010) -
Investigations on asymmetric transmittivity of optical devices and different diode-like behaviors
por: Pan, Aiqiang, et al.
Publicado: (2023) -
Radio transmitters
por: Gray, Laurence, et al.
Publicado: (1961) -
Memetic Chains for Improving the Local Wireless Sensor Networks Localization in Urban Scenarios †
por: Verde, Paula, et al.
Publicado: (2021)