Cargando…
Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability
Urban agriculture is an emerging challenge. Identifying suitable agrosystems that allow for the multiple functions of urban agriculture represents a key issue for the reinforcement of the agricultural matrix in cities, with the aims of counteracting and adapting to climate change and providing econo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694217/ https://www.ncbi.nlm.nih.gov/pubmed/36432753 http://dx.doi.org/10.3390/plants11223026 |
_version_ | 1784837743875981312 |
---|---|
author | Brunori, Elena Bernardini, Alessandra Moresi, Federico Valerio Attorre, Fabio Biasi, Rita |
author_facet | Brunori, Elena Bernardini, Alessandra Moresi, Federico Valerio Attorre, Fabio Biasi, Rita |
author_sort | Brunori, Elena |
collection | PubMed |
description | Urban agriculture is an emerging challenge. Identifying suitable agrosystems that allow for the multiple functions of urban agriculture represents a key issue for the reinforcement of the agricultural matrix in cities, with the aims of counteracting and adapting to climate change and providing economic and social benefits. This study aims to produce a preliminary assessment of the adaptability of Italian native and non-native Vitis vinifera L. cultivars to the stressors of an urban environment. The investigation was carried out on the grapevine collection of the Botanical Garden of Rome (“Vigneto Italia”). A total of 15 grapevine varieties were selected for the evaluation of leaf chlorophyll content, stomatal conductance, and chlorophyll fluorescence under abiotic conditions during the growing season of 2021. Spectral signatures were collected from mature leaves, and several vegetation indices (LWI, MCARI, and WBI) were calculated. Our preliminary results highlighted differences in the behavior of the grapevine cultivars. The native ones showed a medium-high level for leaf chlorophyll content (greater than 350 mol m(−2)), good photosynthetic efficiency (QY > 0.75), and optimal stomatal behavior under drought stress (200 > gs > 50 mmol H(2)O m(−2) s(−1)). The data allowed for the classification of the tested genotypes based on their site-specific resistance and resilience to urban environmental conditions. The grapevine proved to be a biological system that is highly sensitive to climate variables, yet highly adaptable to limiting growing factors. |
format | Online Article Text |
id | pubmed-9694217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96942172022-11-26 Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability Brunori, Elena Bernardini, Alessandra Moresi, Federico Valerio Attorre, Fabio Biasi, Rita Plants (Basel) Article Urban agriculture is an emerging challenge. Identifying suitable agrosystems that allow for the multiple functions of urban agriculture represents a key issue for the reinforcement of the agricultural matrix in cities, with the aims of counteracting and adapting to climate change and providing economic and social benefits. This study aims to produce a preliminary assessment of the adaptability of Italian native and non-native Vitis vinifera L. cultivars to the stressors of an urban environment. The investigation was carried out on the grapevine collection of the Botanical Garden of Rome (“Vigneto Italia”). A total of 15 grapevine varieties were selected for the evaluation of leaf chlorophyll content, stomatal conductance, and chlorophyll fluorescence under abiotic conditions during the growing season of 2021. Spectral signatures were collected from mature leaves, and several vegetation indices (LWI, MCARI, and WBI) were calculated. Our preliminary results highlighted differences in the behavior of the grapevine cultivars. The native ones showed a medium-high level for leaf chlorophyll content (greater than 350 mol m(−2)), good photosynthetic efficiency (QY > 0.75), and optimal stomatal behavior under drought stress (200 > gs > 50 mmol H(2)O m(−2) s(−1)). The data allowed for the classification of the tested genotypes based on their site-specific resistance and resilience to urban environmental conditions. The grapevine proved to be a biological system that is highly sensitive to climate variables, yet highly adaptable to limiting growing factors. MDPI 2022-11-09 /pmc/articles/PMC9694217/ /pubmed/36432753 http://dx.doi.org/10.3390/plants11223026 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Brunori, Elena Bernardini, Alessandra Moresi, Federico Valerio Attorre, Fabio Biasi, Rita Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title | Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title_full | Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title_fullStr | Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title_full_unstemmed | Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title_short | Ecophysiological Response of Vitis vinifera L. in an Urban Agrosystem: Preliminary Assessment of Genetic Variability |
title_sort | ecophysiological response of vitis vinifera l. in an urban agrosystem: preliminary assessment of genetic variability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694217/ https://www.ncbi.nlm.nih.gov/pubmed/36432753 http://dx.doi.org/10.3390/plants11223026 |
work_keys_str_mv | AT brunorielena ecophysiologicalresponseofvitisviniferalinanurbanagrosystempreliminaryassessmentofgeneticvariability AT bernardinialessandra ecophysiologicalresponseofvitisviniferalinanurbanagrosystempreliminaryassessmentofgeneticvariability AT moresifedericovalerio ecophysiologicalresponseofvitisviniferalinanurbanagrosystempreliminaryassessmentofgeneticvariability AT attorrefabio ecophysiologicalresponseofvitisviniferalinanurbanagrosystempreliminaryassessmentofgeneticvariability AT biasirita ecophysiologicalresponseofvitisviniferalinanurbanagrosystempreliminaryassessmentofgeneticvariability |