Cargando…
SA-FEM: Combined Feature Selection and Feature Fusion for Students’ Performance Prediction
Around the world, the COVID-19 pandemic has created significant obstacles for education, driving people to discover workarounds to maintain education. Because of the excellent benefit of cheap-cost information distribution brought about by the advent of the Internet, some offline instructional activ...
Autores principales: | Ye, Mingtao, Sheng, Xin, Lu, Yanjie, Zhang, Guodao, Chen, Huiling, Jiang, Bo, Zou, Senhao, Dai, Liting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694261/ https://www.ncbi.nlm.nih.gov/pubmed/36433433 http://dx.doi.org/10.3390/s22228838 |
Ejemplares similares
-
FEM: feature-enhanced map
por: Afonine, Pavel V., et al.
Publicado: (2015) -
E-Learning Performance Prediction: Mining the Feature Space of Effective Learning Behavior
por: Qiu, Feiyue, et al.
Publicado: (2022) -
MFTR-Net: A Multi-Level Features Network with Targeted Regularization for Large-Scale Point Cloud Classification
por: Liu, Ruyu, et al.
Publicado: (2023) -
FEM and Analytical Modeling of the Incipient Chip Formation for the Generation of Micro-Features
por: Lanzetta, Michele, et al.
Publicado: (2021) -
Proposing Intelligent Approach to Predicting Air Kerma within Radiation Beams of Medical X-ray Imaging Systems
por: Lu, Yanjie, et al.
Publicado: (2023)