Cargando…
Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway
Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this stu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694417/ https://www.ncbi.nlm.nih.gov/pubmed/36430686 http://dx.doi.org/10.3390/ijms232214208 |
_version_ | 1784837794709897216 |
---|---|
author | Shu, Hongmei Sun, Shangwen Wang, Xiaojing Yang, Changqin Zhang, Guowei Meng, Yali Wang, Youhua Hu, Wei Liu, Ruixian |
author_facet | Shu, Hongmei Sun, Shangwen Wang, Xiaojing Yang, Changqin Zhang, Guowei Meng, Yali Wang, Youhua Hu, Wei Liu, Ruixian |
author_sort | Shu, Hongmei |
collection | PubMed |
description | Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this study, RNA-seq and physiological analysis are performed to reveal the transcriptome profiling and change in endogenous phytohormones upon TDZ treatment in abscission zones (AZs) under different temperatures (daily mean temperatures: 25 °C and 15 °C). Genes differentially expressed in AZs between TDZ treatment and control under different temperatures were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two temperature conditions. The results show that, compared with the corresponding control group, TDZ induces many differentially expressed genes (DEGs) in AZs, and the results of the GO and KEGG analyses show that the plant hormone signaling transduction pathway is significantly regulated by TDZ. However, under low temperature, TDZ induced less DEGs, and the enriched GO terms and KEGG pathways were different with those under normal temperature condition. Many genes in the plant hormone signal transduction pathway could not be induced by TDZ under low temperature conditions. In particular, the upregulated ethylene-signaling genes and downregulated auxin-signaling genes in AZs treated with TDZ were significantly affected by low temperatures. Furthermore, the expression of ethylene and auxin synthesis genes and their content in AZs treated with TDZ were also regulated by low temperature conditions. The upregulated cell wall hydrolase genes induced by TDZ were inhibited by low temperatures. However, the inhibition of low temperature on genes in AZs treated with TDZ was relieved with the extension of the treatment time. Together, these results indicate that the responses of ethylene and auxin synthesis and the signaling pathway to TDZ are inhibited by low temperatures, which could not induce the expression of cell wall hydrolase genes, and then inhibit the separation of AZ cells and the abscission of cotton leaves. This result provides new insights into the mechanism of defoliation induced by TDZ under low temperature conditions. |
format | Online Article Text |
id | pubmed-9694417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96944172022-11-26 Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway Shu, Hongmei Sun, Shangwen Wang, Xiaojing Yang, Changqin Zhang, Guowei Meng, Yali Wang, Youhua Hu, Wei Liu, Ruixian Int J Mol Sci Article Thidiazuron (TDZ) is the main defoliant used in production to promote leaf abscission for machine-picked cotton. Under low temperatures, the defoliation rate of cotton treated with TDZ decreases and the time of defoliation is delayed, but there is little information about this mechanism. In this study, RNA-seq and physiological analysis are performed to reveal the transcriptome profiling and change in endogenous phytohormones upon TDZ treatment in abscission zones (AZs) under different temperatures (daily mean temperatures: 25 °C and 15 °C). Genes differentially expressed in AZs between TDZ treatment and control under different temperatures were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the two temperature conditions. The results show that, compared with the corresponding control group, TDZ induces many differentially expressed genes (DEGs) in AZs, and the results of the GO and KEGG analyses show that the plant hormone signaling transduction pathway is significantly regulated by TDZ. However, under low temperature, TDZ induced less DEGs, and the enriched GO terms and KEGG pathways were different with those under normal temperature condition. Many genes in the plant hormone signal transduction pathway could not be induced by TDZ under low temperature conditions. In particular, the upregulated ethylene-signaling genes and downregulated auxin-signaling genes in AZs treated with TDZ were significantly affected by low temperatures. Furthermore, the expression of ethylene and auxin synthesis genes and their content in AZs treated with TDZ were also regulated by low temperature conditions. The upregulated cell wall hydrolase genes induced by TDZ were inhibited by low temperatures. However, the inhibition of low temperature on genes in AZs treated with TDZ was relieved with the extension of the treatment time. Together, these results indicate that the responses of ethylene and auxin synthesis and the signaling pathway to TDZ are inhibited by low temperatures, which could not induce the expression of cell wall hydrolase genes, and then inhibit the separation of AZ cells and the abscission of cotton leaves. This result provides new insights into the mechanism of defoliation induced by TDZ under low temperature conditions. MDPI 2022-11-17 /pmc/articles/PMC9694417/ /pubmed/36430686 http://dx.doi.org/10.3390/ijms232214208 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shu, Hongmei Sun, Shangwen Wang, Xiaojing Yang, Changqin Zhang, Guowei Meng, Yali Wang, Youhua Hu, Wei Liu, Ruixian Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title | Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title_full | Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title_fullStr | Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title_full_unstemmed | Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title_short | Low Temperature Inhibits the Defoliation Efficiency of Thidiazuron in Cotton by Regulating Plant Hormone Synthesis and the Signaling Pathway |
title_sort | low temperature inhibits the defoliation efficiency of thidiazuron in cotton by regulating plant hormone synthesis and the signaling pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694417/ https://www.ncbi.nlm.nih.gov/pubmed/36430686 http://dx.doi.org/10.3390/ijms232214208 |
work_keys_str_mv | AT shuhongmei lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT sunshangwen lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT wangxiaojing lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT yangchangqin lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT zhangguowei lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT mengyali lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT wangyouhua lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT huwei lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway AT liuruixian lowtemperatureinhibitsthedefoliationefficiencyofthidiazuronincottonbyregulatingplanthormonesynthesisandthesignalingpathway |