Cargando…
Comparison of ARIMA model, DNN model and LSTM model in predicting disease burden of occupational pneumoconiosis in Tianjin, China
BACKGROUND: This study aims to explore appropriate model for predicting the disease burden of pneumoconiosis in Tianjin by comparing the prediction effects of Autoregressive Integrated Moving Average (ARIMA) model, Deep Neural Networks (DNN) model and multivariate Long Short-Term Memory Neural Netwo...
Autores principales: | Lou, He-Ren, Wang, Xin, Gao, Ya, Zeng, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694549/ https://www.ncbi.nlm.nih.gov/pubmed/36434563 http://dx.doi.org/10.1186/s12889-022-14642-3 |
Ejemplares similares
-
A hybrid DNN–LSTM model for detecting phishing URLs
por: Ozcan, Alper, et al.
Publicado: (2021) -
The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China
por: Zhao, Daren, et al.
Publicado: (2022) -
Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China
por: Zhang, Rui, et al.
Publicado: (2022) -
Modeling and forecasting CO(2) emissions in China and its regions using a novel ARIMA-LSTM model()
por: Wen, Tingxin, et al.
Publicado: (2023) -
Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model
por: Xue, Sheng, et al.
Publicado: (2022)