Cargando…

Experimental Investigation of Bi-Directional Flax with Ramie Fibre-Reinforced Phenol-Formaldehyde Hybrid Composites

Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rajesh, Durvasulu, Lenin, Nagarajan, Cep, Robert, Anand, Palanivel, Elangovan, Muniyandy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694596/
https://www.ncbi.nlm.nih.gov/pubmed/36433014
http://dx.doi.org/10.3390/polym14224887
Descripción
Sumario:Modern research focuses on natural, green, and sustainable materials that can be used to replace conventional materials. Because of their beneficial qualities, natural fibre composites are being thoroughly researched. This research focuses on the development of a flax fibre reinforced with phenol-formaldehyde resin hybridization with ramie fibre through a vacuum infusion process. Eight different sequences were fabricated using a core–sheath structure and were mechanically characterized as per ASTM standards. The fabrication technique influences the adhesion of the matrix with reinforcement. The results also reveal that composite having ramie as a sheath layer and flax as a core delivers good mechanical characteristics compared to vice versa. The laminate H exhibited highest mechanical properties among all the eight laminates produced for this study. It exhibited a tensile strength of 54 MPa, tensile modulus of 0.98 Gpa, elongation of 7.1%, flexural strength of 143 Mpa, and compressive strength of 63.65 Mpa. The stress strain curves revealed that all the laminates exhibited ductile behaviour before failing during the tensile test and flexural test, respectively. The stacking sequence of the laminate H influenced the mechanical properties exhibited by it and its counterparts. A morphological study was carried out to analyse the failure surfaces. Morphological analysis exhibited few defects in the laminate after the tests. The composites developed delivers better mechanical properties than commercial composites available on the market, which can be used in lightweight structural applications.