Cargando…

Data Collection in IoT Using UAV Based on Multi-Objective Spotted Hyena Optimizer

Today, the use of information and communication technology is very important in making the internet of things (IoT) elements distributable around the earth. With the development of IoT topics, today unmanned aerial vehicles (UAV) are utilized as a platform for gathering data from various IoT devices...

Descripción completa

Detalles Bibliográficos
Autor principal: Al-Khafaji, Hamza Mohammed Ridha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694598/
https://www.ncbi.nlm.nih.gov/pubmed/36433490
http://dx.doi.org/10.3390/s22228896
Descripción
Sumario:Today, the use of information and communication technology is very important in making the internet of things (IoT) elements distributable around the earth. With the development of IoT topics, today unmanned aerial vehicles (UAV) are utilized as a platform for gathering data from various IoT devices located worldwide. Determining the number and optimal locations of drones can minimize energy consumption in this data-collection system in the IoT. Using a promising multi-objective optimization algorithm (MOA) can achieve this goal. In this research, a bio-inspired MOA, termed the multi-objective spotted hyena optimizer (MOSHO), is employed on the data-collection platform for a group of IoT devices in a geographical area. The results of this method have been compared with other evolutionary MOAs. The analysis of the results shows that the MOSHO has a noteworthy consequence on the process of optimal energy consumption in this system, in addition to a high convergence associated with better diversity and robustness. The results of this research can be used to identify the optimization parameters in this system.