Cargando…
How does indirect air-cooling influence pulp chamber temperature in different volume teeth and absence/presence of resin-based composite during light curing?
BACKGROUND: Light-curing of materials during restorative dental procedures poses a risk for pulp tissue overheating. Therefore, the aim of this study was to investigate the effect of indirect air-cooling on pulp chamber temperatures during light-curing of varying volume teeth and absence/presence of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694609/ https://www.ncbi.nlm.nih.gov/pubmed/36424576 http://dx.doi.org/10.1186/s12903-022-02545-z |
Sumario: | BACKGROUND: Light-curing of materials during restorative dental procedures poses a risk for pulp tissue overheating. Therefore, the aim of this study was to investigate the effect of indirect air-cooling on pulp chamber temperatures during light-curing of varying volume teeth and absence/presence of resin-based composite (RBC) at different exposure time. METHODS: The volume of 11 human teeth was measured by micro computed tomograph. An experimental rig controlled the thermal environment of the teeth and a thermocouple inserted retrograde into the root canal measured temperature changes. Pulp chamber temperature was measured with and without air-cooling on teeth without and with RBC at 15 s, 30 s and 60 s intervals. Generalized estimating equations were used for statistical analysis. RESULTS: The temperature increase with air-cooling (versus no air-cooling) was lower in teeth despite absence/presence of RBC (β = − 4.26, 95%CI − 5.33 and β = − 4.47, 95%CI − 5.60, respectively). With air-cooling, the temperature increase in teeth with RBC was lower compared to teeth without RBC (β = − 0.42, 95%CI -0.79; − 0.05). Higher teeth volume resulted in lower temperature increase with air-cooling than without air-cooling (β = − 0.04, 95%CI -0.07; − 0.01 and β = − 0.17, 95%CI -0.30; − 0.05, respectively). CONCLUSIONS: Air-cooling resulted in lower pulp chamber temperature increase. Using air-cooling, the temperature increase was lower in teeth with RBC compared to teeth without RBC. Lower volume teeth resulted in higher temperature increase, thus they seemed to benefit more from air-cooling compared to higher volume teeth. Air-cooling could be an effective tool in controlling pulp temperature increase during light-curing, especially when the tooth volume is small. |
---|