Cargando…
FLDID: Federated Learning Enabled Deep Intrusion Detection in Smart Manufacturing Industries
The rapid development in manufacturing industries due to the introduction of IIoT devices has led to the emergence of Industry 4.0 which results in an industry with intelligence, increased efficiency and reduction in the cost of manufacturing. However, the introduction of IIoT devices opens up the d...
Autores principales: | Verma, Priyanka, Breslin, John G., O’Shea, Donna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694635/ https://www.ncbi.nlm.nih.gov/pubmed/36433569 http://dx.doi.org/10.3390/s22228974 |
Ejemplares similares
-
Fog-Assisted Deep-Learning-Empowered Intrusion Detection System for RPL-Based Resource-Constrained Smart Industries
por: Attique, Danish, et al.
Publicado: (2022) -
Industrial network-based behavioral anomaly detection in AI-enabled smart manufacturing
por: Kim, HyunJin, et al.
Publicado: (2022) -
FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications
por: Ashraf, Eman, et al.
Publicado: (2022) -
Ensemble Model Based on Hybrid Deep Learning for Intrusion Detection in Smart Grid Networks
por: AlHaddad, Ulaa, et al.
Publicado: (2023) -
A Deep Learning-Based Intrusion Detection System for MQTT Enabled IoT
por: Khan, Muhammad Almas, et al.
Publicado: (2021)