Cargando…

Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator

The rapid development of driving simulators for the evaluation of automated driving experience is constrained by the simulator sickness-related nausea. The electrogastrogram (EGG)-based approach may be promising for immediate, objective, and quantitative nausea assessment. Given the relatively high...

Descripción completa

Detalles Bibliográficos
Autores principales: Jakus, Grega, Sodnik, Jaka, Miljković, Nadica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694768/
https://www.ncbi.nlm.nih.gov/pubmed/36433213
http://dx.doi.org/10.3390/s22228616
_version_ 1784837887827640320
author Jakus, Grega
Sodnik, Jaka
Miljković, Nadica
author_facet Jakus, Grega
Sodnik, Jaka
Miljković, Nadica
author_sort Jakus, Grega
collection PubMed
description The rapid development of driving simulators for the evaluation of automated driving experience is constrained by the simulator sickness-related nausea. The electrogastrogram (EGG)-based approach may be promising for immediate, objective, and quantitative nausea assessment. Given the relatively high EGG sensitivity to noises associated with the relatively low amplitude and frequency spans, we introduce an automated procedure comprising statistical analysis and machine learning techniques for EGG-based nausea detection in relation to the noise contamination during automated driving simulation. We calculate the root mean square of EGG amplitude, median and dominant frequencies, magnitude of Power Spectral Density (PSD) at dominant frequency, crest factor of PSD, and spectral variation distribution along with newly introduced parameters: sample and spectral entropy, autocorrelation zero-crossing, and parameters derived from the Poincaré diagram of consecutive EGG samples. Results showed outstanding robustness of sample entropy with moderate robustness of autocorrelation zero-crossing, dominant frequency, and its median. Machine learning reached an accuracy of 88.2% and revealed sample entropy as one of the most relevant and robust parameters, while linear analysis highlighted spectral entropy, spectral variation distribution, and crest factor of PSD. This study clearly indicates the need for customized feature selection in noisy environments, as well as a complementary approach comprising machine learning and statistical analysis for efficient nausea detection.
format Online
Article
Text
id pubmed-9694768
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96947682022-11-26 Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator Jakus, Grega Sodnik, Jaka Miljković, Nadica Sensors (Basel) Article The rapid development of driving simulators for the evaluation of automated driving experience is constrained by the simulator sickness-related nausea. The electrogastrogram (EGG)-based approach may be promising for immediate, objective, and quantitative nausea assessment. Given the relatively high EGG sensitivity to noises associated with the relatively low amplitude and frequency spans, we introduce an automated procedure comprising statistical analysis and machine learning techniques for EGG-based nausea detection in relation to the noise contamination during automated driving simulation. We calculate the root mean square of EGG amplitude, median and dominant frequencies, magnitude of Power Spectral Density (PSD) at dominant frequency, crest factor of PSD, and spectral variation distribution along with newly introduced parameters: sample and spectral entropy, autocorrelation zero-crossing, and parameters derived from the Poincaré diagram of consecutive EGG samples. Results showed outstanding robustness of sample entropy with moderate robustness of autocorrelation zero-crossing, dominant frequency, and its median. Machine learning reached an accuracy of 88.2% and revealed sample entropy as one of the most relevant and robust parameters, while linear analysis highlighted spectral entropy, spectral variation distribution, and crest factor of PSD. This study clearly indicates the need for customized feature selection in noisy environments, as well as a complementary approach comprising machine learning and statistical analysis for efficient nausea detection. MDPI 2022-11-08 /pmc/articles/PMC9694768/ /pubmed/36433213 http://dx.doi.org/10.3390/s22228616 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jakus, Grega
Sodnik, Jaka
Miljković, Nadica
Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title_full Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title_fullStr Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title_full_unstemmed Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title_short Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator
title_sort electrogastrogram-derived features for automated sickness detection in driving simulator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694768/
https://www.ncbi.nlm.nih.gov/pubmed/36433213
http://dx.doi.org/10.3390/s22228616
work_keys_str_mv AT jakusgrega electrogastrogramderivedfeaturesforautomatedsicknessdetectionindrivingsimulator
AT sodnikjaka electrogastrogramderivedfeaturesforautomatedsicknessdetectionindrivingsimulator
AT miljkovicnadica electrogastrogramderivedfeaturesforautomatedsicknessdetectionindrivingsimulator