Cargando…
A comparative study to determine the association of gut microbiome with schizophrenia in Zhejiang, China
BACKGROUND: With the rapid progress of high-throughput sequencing technology, characterization of schizophrenia (SZ) with underlying probing of the gut microbiome can explore pathogenic mechanisms, estimate disease risk, and allow customization of therapeutic and prophylactic modalities. In this stu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694861/ https://www.ncbi.nlm.nih.gov/pubmed/36424595 http://dx.doi.org/10.1186/s12888-022-04328-w |
Sumario: | BACKGROUND: With the rapid progress of high-throughput sequencing technology, characterization of schizophrenia (SZ) with underlying probing of the gut microbiome can explore pathogenic mechanisms, estimate disease risk, and allow customization of therapeutic and prophylactic modalities. In this study, we compared the differences in gut microbial diversity and composition between 50 SZ subjects and 50 healthy matched subjects in Zhejiang, China via targeted next-generation sequencing (16S rRNA amplicon). RESULTS: Accordingly, the alpha diversity indices (observed species index, Shannon index, and Simpson index) of the gut microbiome in the healthy control group were higher than those in the SZ group. Additionally, principal coordinate analysis and non-metric multidimensional scaling of beta diversity revealed that patients with SZ clustered more tightly than healthy controls. At the phylum level, we found that the abundance of Bacteroidetes and Proteobacteria in the SZ group was significantly increased. At the genus level, the relative abundances of Prevotella, Parabacteroides, and Sutterella were significantly higher, whereas the abundances of Faecalibacterium, Blautia, Lachnospira, Clostridium, Ruminococcus, and Coprococcus were lower than those in the healthy control group. Further analyses revealed that Succinivibrio, Megasphaera, and Nesterenkonia may serve as potential biomarkers for distinguishing patients with SZ from those in the control cohort. CONCLUSIONS: This study profiled differences in gut microbiome diversity, taxonomic composition, and function between SZ and healthy cohorts, and the insights from this research could be used to develop targeted next-generation sequencing-based diagnoses for SZ. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12888-022-04328-w. |
---|