Cargando…

Amorphous RuCoP Ultrafine Nanoparticles Supported on Carbon as Efficient Catalysts for Hydrogenation of Adipic Acid to 1,6-Hexanediol

As an important raw material for organic synthesis, the 1,6-hexanediol (HDOL) is synthesized by the complicated two-step process traditionally. The hydrogenation of adipic acid (AA) is a potential way to prepare 1,6-hexanediol. At present, amorphous RuMP (M: Co, Ni, Fe, etc.)-based alloys with low R...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Wei, Wang, Xuyun, Ji, Shan, Wang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694898/
https://www.ncbi.nlm.nih.gov/pubmed/36431569
http://dx.doi.org/10.3390/ma15228084
Descripción
Sumario:As an important raw material for organic synthesis, the 1,6-hexanediol (HDOL) is synthesized by the complicated two-step process traditionally. The hydrogenation of adipic acid (AA) is a potential way to prepare 1,6-hexanediol. At present, amorphous RuMP (M: Co, Ni, Fe, etc.)-based alloys with low Ru content were developed by co-precipitation as the efficient catalysts for converting AA to HDOL via hydrogenation. Among these RuMP catalysts, RuCoP alloys exhibited the highest selectivity and yield to HDOL owing to the electronic effect. The selectivity and yield of HDOL for the optimized RuCoP/C sample was achieved to 80% and 64%, respectively, at 65 bar and 220 °C. A series of RuCoP alloys with different degrees of crystallinity and particle sizes were prepared to investigate the effect of morphology and structure on its catalytic performance. The results indicated that the high catalytic activity of RuCoP/C resulted from its rich active sites due to its amorphous phase and small particle size.