Cargando…
BACH1 regulates the proliferation and odontoblastic differentiation of human dental pulp stem cells
BACKGROUND: The preservation of biological and physiological vitality as well as the formation of dentin are among the main tasks of human dental pulp for a life time. Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) exhibits the capacity of dental pulp regeneration and dentin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694919/ https://www.ncbi.nlm.nih.gov/pubmed/36424585 http://dx.doi.org/10.1186/s12903-022-02588-2 |
Sumario: | BACKGROUND: The preservation of biological and physiological vitality as well as the formation of dentin are among the main tasks of human dental pulp for a life time. Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) exhibits the capacity of dental pulp regeneration and dentin complex rebuilding. Exploration of the mechanisms regulating differentiation and proliferation of hDPSCs may help to investigate potential clinical applications. BTB and CNC homology 1 (BACH1) is a transcription repressor engaged in the regulation of multiple cellular functions. This study aimed to investigate the effects of BACH1 on the proliferation and odontoblastic differentiation of hDPSCs in vitro. METHODS: hDPSCs and pulpal tissues were obtained from extracted human premolars or third molars. The distribution of BACH1 was detected by immunohistochemistry. The mRNA and protein expression of BACH1 were examined by qRT-PCR and Western blot analysis. BACH1 expression was regulated by stable lentivirus-mediated transfection. Cell proliferation and cell cycle were assessed by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay and flow cytometry. The expression of mineralization markers, alkaline phosphatase (ALP) activity and alizarin red S staining were conducted to assess the odontoblastic differentiation ability. RESULTS: BACH1 expression was stronger in the odontoblast layer than in the cell rich zone. The total and nuclear protein level of BACH1 during odontoblastic differentiation was downregulated initially and then upregulated gradually. Knockdown of BACH1 greatly inhibited cell proliferation, arrested cell cycle, upregulated the heme oxygenase-1 (HO-1) expression and attenuated ALP activity, decreased calcium deposits and downregulated the expression of mineralization markers. Treatment of Tin-protoporphyrin IX, an HO-1 inhibitor, failed to rescue the impaired odonto/osteogenic differentiation capacity. Overexpression of BACH1 increased cell proliferation, ALP activity and the expression of mineralization markers. CONCLUSIONS: Our findings suggest that BACH1 is an important regulator of the proliferation and odontoblastic differentiation of hDPSCs in vitro. Manipulation of BACH1 expression may provide an opportunity to promote the regenerative capacity of hDPSCs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12903-022-02588-2. |
---|