Cargando…

Two-Channel Detecting Sensor with Signal Cross-Correlation for FTIR Instruments

This paper’s purpose was to demonstrate a performance of a novel approach in a low-noise optical sensor for an FTIR spectrometer. Methods: Compared to the standard FTIR detection setup, our sensor ensures a higher signal-to-noise ratio (SNR) and lower signal standard deviation by reducing the uncorr...

Descripción completa

Detalles Bibliográficos
Autores principales: Achtenberg, Krzysztof, Mikołajczyk, Janusz, Bielecki, Zbigniew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694966/
https://www.ncbi.nlm.nih.gov/pubmed/36433515
http://dx.doi.org/10.3390/s22228919
Descripción
Sumario:This paper’s purpose was to demonstrate a performance of a novel approach in a low-noise optical sensor for an FTIR spectrometer. Methods: Compared to the standard FTIR detection setup, our sensor ensures a higher signal-to-noise ratio (SNR) and lower signal standard deviation by reducing the uncorrelated noise components (e.g., thermal and 1/f noises of the detection module). Its construction is based on two-channel detection modules and a processing unit with implemented cross-correlation signal analyses. Each module was built of LWIR HgCdTe photodiodes and low-noise transimpedance amplifiers. Results: the experiments demonstrated a decrease in a signal standard deviation of about 1.7 times with a 10 dB-improvement in the SNR. Conclusion: this result indicates our sensor’s main benefit, especially in registered “weak” and noisy interferograms.