Cargando…
An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid
A smart grid is a next-generation intelligent power grid that can maximize energy efficiency by monitoring power information in real time and by controlling the flow of power by introducing IT communication technology to the existing power grid. In order to apply a wireless communication network to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694981/ https://www.ncbi.nlm.nih.gov/pubmed/36433223 http://dx.doi.org/10.3390/s22228625 |
_version_ | 1784837942312697856 |
---|---|
author | Kim, Jin-Woo Kim, Jaehee Lee, Jaeho |
author_facet | Kim, Jin-Woo Kim, Jaehee Lee, Jaeho |
author_sort | Kim, Jin-Woo |
collection | PubMed |
description | A smart grid is a next-generation intelligent power grid that can maximize energy efficiency by monitoring power information in real time and by controlling the flow of power by introducing IT communication technology to the existing power grid. In order to apply a wireless communication network to a smart grid, it is necessary to be able to efficiently process large amounts of power-related data while enabling a high level of reliability and quality of service (QoS) support. In addition, international standards-based design is essential considering compatibility and scalability. The IEEE 802.15.4 standard is considered to be the most powerful communication method for processing data through the smart grid AMI. To reduce the energy consumption, as the duty cycle of the superframe increases, the probability of the congestion increases. However, this binary exponential algorithm in IEEE 802.15.4 standard does not account for the application of traffic characteristics that essentially negatively affect the smart grid network performances in terms of packet delivery ratio and time delay. Therefore, in this paper, we propose a new transmission scheme to reduce performance degradation by excessive collisions in the content access period (CAP), when data transmission is performed in IEEE 802.15.4 applied to smart grids. In addition, we investigated the main research topics required when applying wireless networking technology to smart grids and suggested improvement measures. Simulation results showed that the proposed scheme increased the data delivery rate and reduced the latency, and it was confirmed that reliability was improved. |
format | Online Article Text |
id | pubmed-9694981 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96949812022-11-26 An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid Kim, Jin-Woo Kim, Jaehee Lee, Jaeho Sensors (Basel) Article A smart grid is a next-generation intelligent power grid that can maximize energy efficiency by monitoring power information in real time and by controlling the flow of power by introducing IT communication technology to the existing power grid. In order to apply a wireless communication network to a smart grid, it is necessary to be able to efficiently process large amounts of power-related data while enabling a high level of reliability and quality of service (QoS) support. In addition, international standards-based design is essential considering compatibility and scalability. The IEEE 802.15.4 standard is considered to be the most powerful communication method for processing data through the smart grid AMI. To reduce the energy consumption, as the duty cycle of the superframe increases, the probability of the congestion increases. However, this binary exponential algorithm in IEEE 802.15.4 standard does not account for the application of traffic characteristics that essentially negatively affect the smart grid network performances in terms of packet delivery ratio and time delay. Therefore, in this paper, we propose a new transmission scheme to reduce performance degradation by excessive collisions in the content access period (CAP), when data transmission is performed in IEEE 802.15.4 applied to smart grids. In addition, we investigated the main research topics required when applying wireless networking technology to smart grids and suggested improvement measures. Simulation results showed that the proposed scheme increased the data delivery rate and reduced the latency, and it was confirmed that reliability was improved. MDPI 2022-11-09 /pmc/articles/PMC9694981/ /pubmed/36433223 http://dx.doi.org/10.3390/s22228625 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Jin-Woo Kim, Jaehee Lee, Jaeho An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title | An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title_full | An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title_fullStr | An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title_full_unstemmed | An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title_short | An Adaptive Network Design for Advanced Metering Infrastructure in a Smart Grid |
title_sort | adaptive network design for advanced metering infrastructure in a smart grid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9694981/ https://www.ncbi.nlm.nih.gov/pubmed/36433223 http://dx.doi.org/10.3390/s22228625 |
work_keys_str_mv | AT kimjinwoo anadaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid AT kimjaehee anadaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid AT leejaeho anadaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid AT kimjinwoo adaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid AT kimjaehee adaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid AT leejaeho adaptivenetworkdesignforadvancedmeteringinfrastructureinasmartgrid |