Cargando…

Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain

Volcanic eruptions pose a great threat to humans. In this context, volcanic hazard and risk assessment constitute crucial issues with respect to mitigating the effects of volcanic activity and ensuring the health and safety of inhabitants. Lava flows directly affect communities living near active vo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kyriou, Aggeliki, Nikolakopoulos, Konstantinos G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695005/
https://www.ncbi.nlm.nih.gov/pubmed/36433367
http://dx.doi.org/10.3390/s22228768
_version_ 1784837948360884224
author Kyriou, Aggeliki
Nikolakopoulos, Konstantinos G.
author_facet Kyriou, Aggeliki
Nikolakopoulos, Konstantinos G.
author_sort Kyriou, Aggeliki
collection PubMed
description Volcanic eruptions pose a great threat to humans. In this context, volcanic hazard and risk assessment constitute crucial issues with respect to mitigating the effects of volcanic activity and ensuring the health and safety of inhabitants. Lava flows directly affect communities living near active volcanoes. Nowadays, remote sensing advances make it possible to effectively monitor eruptive activity, providing immediate and accurate information concerning lava evolution. The current research focuses on the mapping of the surface deformation and the analysis of lava flow evolution occurred on the island of La Palma, during the recent (2021) eruptive phase of the volcano. Sentinel-1 data covering the island were collected throughout the entire eruptive period, i.e., September 2021 until January 2022. The processing was based on amplitude-based and phase-based detection methods, i.e., Synthetic Aperture Radar interferometry (InSAR) and offset tracking. In particular, ground deformation occurred on the island, while Line-Of-Sight (LOS) displacements were derived from Sentinel-1 interferograms. Moreover, the evolution of lava flow velocity was estimated using Sentinel-1 imagery along with offset tracking technique. The maximum lava flow velocity was calculated to be 2 m/day. It was proved that both approaches can provide rapid and useful information in emergencies, especially in inaccessible areas. Although offset tracking seems a quite promising technique for the mapping of lava flows, it still requires improvement.
format Online
Article
Text
id pubmed-9695005
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96950052022-11-26 Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain Kyriou, Aggeliki Nikolakopoulos, Konstantinos G. Sensors (Basel) Article Volcanic eruptions pose a great threat to humans. In this context, volcanic hazard and risk assessment constitute crucial issues with respect to mitigating the effects of volcanic activity and ensuring the health and safety of inhabitants. Lava flows directly affect communities living near active volcanoes. Nowadays, remote sensing advances make it possible to effectively monitor eruptive activity, providing immediate and accurate information concerning lava evolution. The current research focuses on the mapping of the surface deformation and the analysis of lava flow evolution occurred on the island of La Palma, during the recent (2021) eruptive phase of the volcano. Sentinel-1 data covering the island were collected throughout the entire eruptive period, i.e., September 2021 until January 2022. The processing was based on amplitude-based and phase-based detection methods, i.e., Synthetic Aperture Radar interferometry (InSAR) and offset tracking. In particular, ground deformation occurred on the island, while Line-Of-Sight (LOS) displacements were derived from Sentinel-1 interferograms. Moreover, the evolution of lava flow velocity was estimated using Sentinel-1 imagery along with offset tracking technique. The maximum lava flow velocity was calculated to be 2 m/day. It was proved that both approaches can provide rapid and useful information in emergencies, especially in inaccessible areas. Although offset tracking seems a quite promising technique for the mapping of lava flows, it still requires improvement. MDPI 2022-11-13 /pmc/articles/PMC9695005/ /pubmed/36433367 http://dx.doi.org/10.3390/s22228768 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kyriou, Aggeliki
Nikolakopoulos, Konstantinos G.
Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title_full Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title_fullStr Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title_full_unstemmed Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title_short Lava Mapping Using Sentinel-1 Data after the Occurrence of a Volcanic Eruption—The Case of Cumbre Vieja Eruption on La Palma, Canary Islands, Spain
title_sort lava mapping using sentinel-1 data after the occurrence of a volcanic eruption—the case of cumbre vieja eruption on la palma, canary islands, spain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695005/
https://www.ncbi.nlm.nih.gov/pubmed/36433367
http://dx.doi.org/10.3390/s22228768
work_keys_str_mv AT kyriouaggeliki lavamappingusingsentinel1dataaftertheoccurrenceofavolcaniceruptionthecaseofcumbreviejaeruptiononlapalmacanaryislandsspain
AT nikolakopouloskonstantinosg lavamappingusingsentinel1dataaftertheoccurrenceofavolcaniceruptionthecaseofcumbreviejaeruptiononlapalmacanaryislandsspain