Cargando…
Performance of Narrow Band Wide Area Networks with Gateway Diversity
This paper quantifies the coverage area of Low-Power Wide-Area Networks (LPWAN) for Packet Success Rates (PSR) above 85%, where acceptable Quality of Service (QoS) can be achieved. The network consists of battery-operated end-nodes (ENs) and multiple stationary gateways (GWs). We consider asynchrono...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695022/ https://www.ncbi.nlm.nih.gov/pubmed/36433427 http://dx.doi.org/10.3390/s22228831 |
Sumario: | This paper quantifies the coverage area of Low-Power Wide-Area Networks (LPWAN) for Packet Success Rates (PSR) above 85%, where acceptable Quality of Service (QoS) can be achieved. The network consists of battery-operated end-nodes (ENs) and multiple stationary gateways (GWs). We consider asynchronous communication that uses ALOHA-based random channel access. Each transmission from the ENs can be received by multiple GWs. Such spatial diversity results in favorable Signal-to-Noise ratios (SNR). The LoRa modulation is assumed and its specific features, such as IQ inversion, further contribute to decreasing the impact of interference. An increase in the GW density improves network performance, which allows support for a larger density of end-nodes as well as increasing the coverage area. Our simulation results show that a suburban area of up to 1.44 km(2) can be covered with five GWs with up to fifty end-nodes with a PSR greater than 86%. |
---|