Cargando…

Relationship between Onset of Sliding Behavior and Size of Droplet on Inclined Solid Substrate

Whether a droplet slides or not on inclined solid surface is mainly influenced by a balance between the adhesion force at contact area and the gravitational force exerted on the droplet. Especially as the adhesion force is a key parameter for the determination of the sliding behavior of droplets. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Yonemoto, Yukihiro, Fujii, Yosuke, Sugino, Yoshiki, Kunugi, Tomoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695122/
https://www.ncbi.nlm.nih.gov/pubmed/36363870
http://dx.doi.org/10.3390/mi13111849
Descripción
Sumario:Whether a droplet slides or not on inclined solid surface is mainly influenced by a balance between the adhesion force at contact area and the gravitational force exerted on the droplet. Especially as the adhesion force is a key parameter for the determination of the sliding behavior of droplets. The adhesion force is mainly estimated by experimental observation for the sliding motion of the droplet. However, at present it is unknown whether the adhesion force is a constant value regardless of the droplet size or not. In the present study, focused on the onset for sliding of water-ethanol binary mixture droplets on inclined solid surface, experimental investigation on the sliding droplets is performed by considering the droplet volumes ranging from 7 to 600 μL in order to understand the effect of the size of the droplet on the adhesive property. The results are discussed using the existing analytical models. From the results, it is found that the adhesion force increases in the case of large droplet volume, while the force reaches constant value in the case of small droplet volume. This difference is related to the degree of the droplet shape deformation, which leads to a change in the contact angle. Finally, a simple empirical model for the adhesion force including the size effect is proposed.