Cargando…
Implementation of Kalman Filtering with Spiking Neural Networks
A Kalman filter can be used to fill space–state reconstruction dynamics based on knowledge of a system and partial measurements. However, its performance relies on accurate modeling of the system dynamics and a proper characterization of the uncertainties, which can be hard to obtain in real-life sc...
Autores principales: | Juárez-Lora, Alejandro, García-Sebastián, Luis M., Ponce-Ponce, Victor H., Rubio-Espino, Elsa, Molina-Lozano, Herón, Sossa, Humberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695172/ https://www.ncbi.nlm.nih.gov/pubmed/36433442 http://dx.doi.org/10.3390/s22228845 |
Ejemplares similares
-
R-STDP Spiking Neural Network Architecture for Motion Control on a Changing Friction Joint Robotic Arm
por: Juarez-Lora, Alejandro, et al.
Publicado: (2022) -
Neuromorphic Signal Filter for Robot Sensoring
por: García-Sebastián, Luis M., et al.
Publicado: (2022) -
Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots
por: López-Lozada, Elizabeth, et al.
Publicado: (2021) -
CNN Based Detectors on Planetary Environments: A Performance Evaluation
por: Furlán, Federico, et al.
Publicado: (2020) -
Kalman filtering and neural networks
por: Haykin, Simon S
Publicado: (2001)