Cargando…

Functional Microbial Communities in Hybrid Linear Flow Channel Reactors for Desulfurization of Tannery Effluent

Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic...

Descripción completa

Detalles Bibliográficos
Autores principales: Horn, Emma J., van Hille, Rob P., Oyekola, Oluwaseun O., Welz, Pamela J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695182/
https://www.ncbi.nlm.nih.gov/pubmed/36422375
http://dx.doi.org/10.3390/microorganisms10112305
Descripción
Sumario:Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships. This was accomplished by interpreting the results obtained from amplicon sequencing of the 16S rRNA gene and quantification of the dissimilatory sulfite reducing (dsrB) gene. In an effort to provide a suitable inoculum, microbial consortia were harvested from saline estuaries and enriched. However, it was found that bioaugmentation was not necessary because native communities from tannery wastewater were selected over exogenous communities from the enriched consortia. Overall, Dethiosulfovibrio sp. and Petrimonas sp. were strongly selected (maximum relative abundances of 29% and 26%, respectively), while Desulfobacterium autotrophicum (57%), and Desulfobacter halotolerans (27%) dominated the sulfate reducing bacteria. The presence of elemental sulfur reducing genera such as Dethiosulfovibrio and Petrimonas is not desirable in HLFCRs, and strategies to counter their selection need to be considered to ensure efficiency of these systems for pre-treatment of tannery effluent.