Cargando…
Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as alte...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695199/ https://www.ncbi.nlm.nih.gov/pubmed/36422903 http://dx.doi.org/10.3390/toxics10110696 |
Sumario: | Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain. |
---|