Cargando…
Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective
The preclinical drug discovery stage often requires a large amount of costly and time-consuming experiments using huge sets of chemical compounds. In the last few decades, this process has undergone significant improvements by the introduction of quantitative structure-activity relationship (QSAR) m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695291/ https://www.ncbi.nlm.nih.gov/pubmed/36355555 http://dx.doi.org/10.3390/ph15111383 |
_version_ | 1784838019686072320 |
---|---|
author | Pal, Ranita Patra, Shanti Gopal Chattaraj, Pratim Kumar |
author_facet | Pal, Ranita Patra, Shanti Gopal Chattaraj, Pratim Kumar |
author_sort | Pal, Ranita |
collection | PubMed |
description | The preclinical drug discovery stage often requires a large amount of costly and time-consuming experiments using huge sets of chemical compounds. In the last few decades, this process has undergone significant improvements by the introduction of quantitative structure-activity relationship (QSAR) modelling that uses a certain percentage of experimental data to predict the biological activity/property of compounds with similar structural skeleton and/or containing a particular functional group(s). The use of machine learning tools along with it has made life even easier for pharmaceutical researchers. Here, we discuss the toxicity of certain sets of bioactive compounds towards Pimephales promelas and Tetrahymena pyriformis in terms of the global conceptual density functional theory (CDFT)-based descriptor, electrophilicity index (ω). We have compared the results with those obtained by using the commonly used hydrophobicity parameter, logP (where P is the n-octanol/water partition coefficient), considering the greater ease of computing the ω descriptor. The Human African trypanosomiasis (HAT) curing activity of 32 pyridyl benzamide derivatives is also studied against Tryphanosoma brucei. In this review article, we summarize these multiple linear regression (MLR)-based QSAR studies in terms of electrophilicity (ω, ω(2)) and hydrophobicity (logP, (logP)(2)) parameters. |
format | Online Article Text |
id | pubmed-9695291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96952912022-11-26 Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective Pal, Ranita Patra, Shanti Gopal Chattaraj, Pratim Kumar Pharmaceuticals (Basel) Review The preclinical drug discovery stage often requires a large amount of costly and time-consuming experiments using huge sets of chemical compounds. In the last few decades, this process has undergone significant improvements by the introduction of quantitative structure-activity relationship (QSAR) modelling that uses a certain percentage of experimental data to predict the biological activity/property of compounds with similar structural skeleton and/or containing a particular functional group(s). The use of machine learning tools along with it has made life even easier for pharmaceutical researchers. Here, we discuss the toxicity of certain sets of bioactive compounds towards Pimephales promelas and Tetrahymena pyriformis in terms of the global conceptual density functional theory (CDFT)-based descriptor, electrophilicity index (ω). We have compared the results with those obtained by using the commonly used hydrophobicity parameter, logP (where P is the n-octanol/water partition coefficient), considering the greater ease of computing the ω descriptor. The Human African trypanosomiasis (HAT) curing activity of 32 pyridyl benzamide derivatives is also studied against Tryphanosoma brucei. In this review article, we summarize these multiple linear regression (MLR)-based QSAR studies in terms of electrophilicity (ω, ω(2)) and hydrophobicity (logP, (logP)(2)) parameters. MDPI 2022-11-10 /pmc/articles/PMC9695291/ /pubmed/36355555 http://dx.doi.org/10.3390/ph15111383 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pal, Ranita Patra, Shanti Gopal Chattaraj, Pratim Kumar Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title | Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title_full | Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title_fullStr | Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title_full_unstemmed | Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title_short | Quantitative Structure–Toxicity Relationship in Bioactive Molecules from a Conceptual DFT Perspective |
title_sort | quantitative structure–toxicity relationship in bioactive molecules from a conceptual dft perspective |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695291/ https://www.ncbi.nlm.nih.gov/pubmed/36355555 http://dx.doi.org/10.3390/ph15111383 |
work_keys_str_mv | AT palranita quantitativestructuretoxicityrelationshipinbioactivemoleculesfromaconceptualdftperspective AT patrashantigopal quantitativestructuretoxicityrelationshipinbioactivemoleculesfromaconceptualdftperspective AT chattarajpratimkumar quantitativestructuretoxicityrelationshipinbioactivemoleculesfromaconceptualdftperspective |