Cargando…
Machine Learning Techniques for Arousal Classification from Electrodermal Activity: A Systematic Review
This article introduces a systematic review on arousal classification based on electrodermal activity (EDA) and machine learning (ML). From a first set of 284 articles searched for in six scientific databases, fifty-nine were finally selected according to various criteria established. The systematic...
Autores principales: | Sánchez-Reolid, Roberto, López de la Rosa, Francisco, Sánchez-Reolid, Daniel, López, María T., Fernández-Caballero, Antonio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695360/ https://www.ncbi.nlm.nih.gov/pubmed/36433482 http://dx.doi.org/10.3390/s22228886 |
Ejemplares similares
-
Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli
por: Bartolomé-Tomás, Almudena, et al.
Publicado: (2020) -
Electrodermal Activity Sensor for Classification of Calm/Distress Condition
por: Zangróniz, Roberto, et al.
Publicado: (2017) -
Sympathetic Arousal Detection in Horses Using Electrodermal Activity
por: Golzari, Kia, et al.
Publicado: (2023) -
Effectiveness of the level of personal relevance of visual autobiographical stimuli in the induction of positive emotions in young and older adults: pilot study protocol for a randomized controlled trial
por: Fernández, Dolores, et al.
Publicado: (2020) -
Classification of Emotions Based on Electrodermal Activity and Transfer Learning - a Pilot Study
por: Jacobsen, Fredrik A., et al.
Publicado: (2021)