Cargando…

Label-Free Surface-Enhanced Raman Spectroscopic Analysis of Proteins: Advances and Applications

Surface-enhanced Raman spectroscopy (SERS) is powerful for structural characterization of biomolecules under physiological condition. Owing to its high sensitivity and selectivity, SERS is useful for probing intrinsic structural information of proteins and is attracting increasing attention in bioph...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Linjun, Fang, Guilin, Tang, Jinpin, Cheng, Qiaomei, Han, Xiaoxia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695365/
https://www.ncbi.nlm.nih.gov/pubmed/36430342
http://dx.doi.org/10.3390/ijms232213868
Descripción
Sumario:Surface-enhanced Raman spectroscopy (SERS) is powerful for structural characterization of biomolecules under physiological condition. Owing to its high sensitivity and selectivity, SERS is useful for probing intrinsic structural information of proteins and is attracting increasing attention in biophysics, bioanalytical chemistry, and biomedicine. This review starts with a brief introduction of SERS theories and SERS methodology of protein structural characterization. SERS-active materials, related synthetic approaches, and strategies for protein-material assemblies are outlined and discussed, followed by detailed discussion of SERS spectroscopy of proteins with and without cofactors. Recent applications and advances of protein SERS in biomarker detection, cell analysis, and pathogen discrimination are then highlighted, and the spectral reproducibility and limitations are critically discussed. The review ends with a conclusion and a discussion of current challenges and perspectives of promising directions.