Cargando…
Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis
Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. Thi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695396/ https://www.ncbi.nlm.nih.gov/pubmed/36423148 http://dx.doi.org/10.3390/v14112539 |
_version_ | 1784838049219215360 |
---|---|
author | Fernandes, Rita P. Escandell, José M. Guerreiro, Ana C. L. Moura, Filipa Faria, Tiago Q. Carvalho, Sofia B. Silva, Ricardo J. S. Gomes-Alves, Patrícia Peixoto, Cristina |
author_facet | Fernandes, Rita P. Escandell, José M. Guerreiro, Ana C. L. Moura, Filipa Faria, Tiago Q. Carvalho, Sofia B. Silva, Ricardo J. S. Gomes-Alves, Patrícia Peixoto, Cristina |
author_sort | Fernandes, Rita P. |
collection | PubMed |
description | Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. This paper describes the implementation of a highly sensitive method, capillary electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF) detector to monitor the impact of various bioprocess steps on the quality of different viral vectors. The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This method outperforms other analytical methods, such as SDS–polyacrylamide gel electrophoresis with Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack of suitable analytical tools. This method was also qualified for quantification of rAAV2 according to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of different virus-based targets, with a great potential for application in biomanufacturing. |
format | Online Article Text |
id | pubmed-9695396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96953962022-11-26 Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis Fernandes, Rita P. Escandell, José M. Guerreiro, Ana C. L. Moura, Filipa Faria, Tiago Q. Carvalho, Sofia B. Silva, Ricardo J. S. Gomes-Alves, Patrícia Peixoto, Cristina Viruses Article Virus-based biopharmaceutical products are used in clinical applications such as vaccines, gene therapy, and immunotherapy. However, their manufacturing remains a challenge, hampered by the lack of appropriate analytical tools for purification monitoring or characterization of the final product. This paper describes the implementation of a highly sensitive method, capillary electrophoresis (CE)-sodium dodecyl sulfate (SDS) combined with a laser-induced fluorescence (LIF) detector to monitor the impact of various bioprocess steps on the quality of different viral vectors. The fluorescence labelling procedure uses the (3-(2-furoyl) quinoline-2-carboxaldehyde dye, and the CE-SDS LIF method enables the evaluation of in-process besides final product samples. This method outperforms other analytical methods, such as SDS–polyacrylamide gel electrophoresis with Sypro Ruby staining, in terms of sensitivity, resolution, and high-throughput capability. Notably, this CE-SDS LIF method was also successfully implemented to characterize enveloped viruses such as Maraba virus and lentivirus, whose development as biopharmaceuticals is now restricted by the lack of suitable analytical tools. This method was also qualified for quantification of rAAV2 according to the International Council for Harmonisation guidelines. Overall, our work shows that CE-SDS LIF is a precise and sensitive analytical platform for in-process sample analysis and quantification of different virus-based targets, with a great potential for application in biomanufacturing. MDPI 2022-11-17 /pmc/articles/PMC9695396/ /pubmed/36423148 http://dx.doi.org/10.3390/v14112539 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fernandes, Rita P. Escandell, José M. Guerreiro, Ana C. L. Moura, Filipa Faria, Tiago Q. Carvalho, Sofia B. Silva, Ricardo J. S. Gomes-Alves, Patrícia Peixoto, Cristina Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title | Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title_full | Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title_fullStr | Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title_full_unstemmed | Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title_short | Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis |
title_sort | assessing multi-attribute characterization of enveloped and non-enveloped viral particles by capillary electrophoresis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695396/ https://www.ncbi.nlm.nih.gov/pubmed/36423148 http://dx.doi.org/10.3390/v14112539 |
work_keys_str_mv | AT fernandesritap assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT escandelljosem assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT guerreiroanacl assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT mourafilipa assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT fariatiagoq assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT carvalhosofiab assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT silvaricardojs assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT gomesalvespatricia assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis AT peixotocristina assessingmultiattributecharacterizationofenvelopedandnonenvelopedviralparticlesbycapillaryelectrophoresis |