Cargando…

GDPD5 Related to Lipid Metabolism Is a Potential Prognostic Biomarker in Neuroblastoma

Neuroblastoma (NB) is an extracranial solid tumor in children with poor prognosis in high-risk patients and its pathogenesis and prognostic markers urgently need to be explored. This study aimed to explore potential biomarkers related to NB from the aspect of lipid metabolism. Fifty-eight lipid meta...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Tengling, Peng, Junwei, Li, Qijun, Zhang, Yao, Huang, Yun, Xu, Lei, Yang, Genling, Tan, Dongmei, Zhang, Qian, Tan, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695425/
https://www.ncbi.nlm.nih.gov/pubmed/36430219
http://dx.doi.org/10.3390/ijms232213740
Descripción
Sumario:Neuroblastoma (NB) is an extracranial solid tumor in children with poor prognosis in high-risk patients and its pathogenesis and prognostic markers urgently need to be explored. This study aimed to explore potential biomarkers related to NB from the aspect of lipid metabolism. Fifty-eight lipid metabolism-related differentially expressed genes between high-risk NB and non-high-risk NB in the GSE49710 dataset were analyzed using bioinformatics, including 45 down-regulated genes and 13 up-regulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified steroid hormone biosynthesis as an abnormal metabolic pathway in high-risk NB. Survival analysis established a three-gene prognostic model, including ACHE, GDPD5 and PIK3R1. In the test data, the AUCs of the established prognostic models used to predict patient survival at 1, 3 and 5 years were 0.84, 0.90 and 0.91, respectively. Finally, in the SH-SY5Y cell line, it was verified that overexpression of GDPD5 can inhibit cell proliferation and migration, as well as affect the lipid metabolism of SH-SY5Y, but not the sugar metabolism. hsa-miR-592 was predicted to be a potential target miRNA of GDPD5 by bioinformatics. In conclusion, this study develops a lipid-metabolism-related gene-based prognostic model for NB and demonstrates that GDPD5 inhibits SH-SY5Y proliferation and migration and may be targeted by hsa-miR-592 and inhibit SH-SY5Y fat synthesis.