Cargando…
DOA Estimation for Massive MIMO Systems with Unknown Mutual Coupling Based on Block Sparse Bayesian Learning
Obtaining accurate angle parameters using direction-of-arrival (DOA) estimation algorithms is crucial for acquiring channel state information (CSI) in massive multiple-input multiple-output (MIMO) systems. However, the performance of the existing algorithms deteriorates severely due to mutual coupli...
Autores principales: | Liu, Yang, Dong, Na, Zhang, Xiaohui, Zhao, Xin, Zhang, Yinghui, Qiu, Tianshuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695560/ https://www.ncbi.nlm.nih.gov/pubmed/36433231 http://dx.doi.org/10.3390/s22228634 |
Ejemplares similares
-
Sparse Bayesian Learning for DOA Estimation with Mutual Coupling
por: Dai, Jisheng, et al.
Publicado: (2015) -
Off-Grid DOA Estimation Using Sparse Bayesian Learning for MIMO Radar under Impulsive Noise
por: Ma, Jitong, et al.
Publicado: (2022) -
Reweighted Off-Grid Sparse Spectrum Fitting for DOA Estimation in Sensor Array with Unknown Mutual Coupling
por: Li, Liangliang, et al.
Publicado: (2023) -
DOA Estimation and Self-calibration under Unknown Mutual Coupling
por: Qi, Dong, et al.
Publicado: (2019) -
Cumulant-Based DOA Estimation of Noncircular Signals against Unknown Mutual Coupling
por: Wang, Baoping, et al.
Publicado: (2020)