Cargando…

Borate-Based Compounds as Mixed Polyanion Cathode Materials for Advanced Batteries

Rational design of new and cost-effective advanced batteries for the intended scale of application is concurrent with cathode materials development. Foundational knowledge of cathode materials’ processing–structure–properties–performance relationship is integral. In this review, we provide an overvi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanglay, Giancarlo Dominador D., Garcia, Jayson S., Palaganas, Mecaelah S., Sorolla, Maurice, See, Sean, Limjuco, Lawrence A., Ocon, Joey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695605/
https://www.ncbi.nlm.nih.gov/pubmed/36432146
http://dx.doi.org/10.3390/molecules27228047
Descripción
Sumario:Rational design of new and cost-effective advanced batteries for the intended scale of application is concurrent with cathode materials development. Foundational knowledge of cathode materials’ processing–structure–properties–performance relationship is integral. In this review, we provide an overview of borate-based compounds as possible mixed polyanion cathode materials in organic electrolyte metal-ion batteries. A recapitulation of lithium-ion battery (LIB) cathode materials development provides that rationale. The combined method of data mining and high-throughput ab initio computing was briefly discussed to derive how carbonate-based compounds in sidorenkite structure were suggested. Borate-based compounds, albeit just close to stability (viz., <30 meV at(−1)), offer tunability and versatility and hence, potential effectivity as polyanion cathodes due to (1) diverse structures which can host alkali metal intercalation; (2) the low weight of borate relative to mature polyanion families which can translate to higher theoretical capacity; and a (3) rich chemistry which can alter the inductive effect on earth-abundant transition metals (e.g., Ni and Fe), potentially improving the open-circuit voltage (OCV) of the cell. This review paper provides a reference on the structures, properties, and synthesis routes of known borate-based compounds [viz., borophosphate (BPO), borosilicate (BSiO), and borosulfate (BSO)], as these borate-based compounds are untapped despite their potential for mixed polyanion cathode materials for advanced batteries.