Cargando…

Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling

This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern...

Descripción completa

Detalles Bibliográficos
Autores principales: Ravaszová, Simona, Dvořák, Karel, Vaičiukynienė, Danute, Sisol, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695657/
https://www.ncbi.nlm.nih.gov/pubmed/36431568
http://dx.doi.org/10.3390/ma15228085
_version_ 1784838116862853120
author Ravaszová, Simona
Dvořák, Karel
Vaičiukynienė, Danute
Sisol, Martin
author_facet Ravaszová, Simona
Dvořák, Karel
Vaičiukynienė, Danute
Sisol, Martin
author_sort Ravaszová, Simona
collection PubMed
description This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern Europe in coal grinding. The disadvantage of the VTI method is that it uses a specific grinding device that otherwise has no other use and nowadays is no longer commonly available. Through the new method, high-energy grinding was performed using a commercially available planetary mill on silicate materials such as limestone, feldspar, corundum, and quartz. The effectiveness of the method was verified on clinker as a representative of widely used materials. The deviation between the grindability index calculated by the origin VTI method and the new developed method was on average approximately 8%; in the case of clinker grinding, it was only 3%. The results showed that the VTI method could be replaced by a new method that uses a modern available planetary mill and laser granulometry to determine the grindability index. The result is a new classification of materials according to their grindability indexes, which is based on the original VTI method.
format Online
Article
Text
id pubmed-9695657
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96956572022-11-26 Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling Ravaszová, Simona Dvořák, Karel Vaičiukynienė, Danute Sisol, Martin Materials (Basel) Article This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern Europe in coal grinding. The disadvantage of the VTI method is that it uses a specific grinding device that otherwise has no other use and nowadays is no longer commonly available. Through the new method, high-energy grinding was performed using a commercially available planetary mill on silicate materials such as limestone, feldspar, corundum, and quartz. The effectiveness of the method was verified on clinker as a representative of widely used materials. The deviation between the grindability index calculated by the origin VTI method and the new developed method was on average approximately 8%; in the case of clinker grinding, it was only 3%. The results showed that the VTI method could be replaced by a new method that uses a modern available planetary mill and laser granulometry to determine the grindability index. The result is a new classification of materials according to their grindability indexes, which is based on the original VTI method. MDPI 2022-11-15 /pmc/articles/PMC9695657/ /pubmed/36431568 http://dx.doi.org/10.3390/ma15228085 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ravaszová, Simona
Dvořák, Karel
Vaičiukynienė, Danute
Sisol, Martin
Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title_full Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title_fullStr Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title_full_unstemmed Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title_short Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
title_sort application of a method for measuring the grindability of fine-grained materials by high-speed milling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695657/
https://www.ncbi.nlm.nih.gov/pubmed/36431568
http://dx.doi.org/10.3390/ma15228085
work_keys_str_mv AT ravaszovasimona applicationofamethodformeasuringthegrindabilityoffinegrainedmaterialsbyhighspeedmilling
AT dvorakkarel applicationofamethodformeasuringthegrindabilityoffinegrainedmaterialsbyhighspeedmilling
AT vaiciukynienedanute applicationofamethodformeasuringthegrindabilityoffinegrainedmaterialsbyhighspeedmilling
AT sisolmartin applicationofamethodformeasuringthegrindabilityoffinegrainedmaterialsbyhighspeedmilling