Cargando…
Bayesian Aggregation Improves Traditional Single-Image Crop Classification Approaches
Accurate information about growing crops allows for regulating the internal stocks of agricultural products and drawing strategies for negotiating agricultural commodities on financial markets. Machine learning methods are widely implemented for crop type recognition and classification based on sate...
Autores principales: | Matvienko, Ivan, Gasanov, Mikhail, Petrovskaia, Anna, Kuznetsov, Maxim, Jana, Raghavendra, Pukalchik, Maria, Oseledets, Ivan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695680/ https://www.ncbi.nlm.nih.gov/pubmed/36433199 http://dx.doi.org/10.3390/s22228600 |
Ejemplares similares
-
Sensitivity Analysis of Soil Parameters in Crop Model Supported with High-Throughput Computing
por: Gasanov, Mikhail, et al.
Publicado: (2020) -
A Single Image Deep Learning Approach to Restoration of Corrupted Landsat-7 Satellite Images
por: Petrovskaia, Anna, et al.
Publicado: (2022) -
Bayesian optimization for seed germination
por: Nikitin, Artyom, et al.
Publicado: (2019) -
Regulation-based probabilistic substance quality index and automated geo-spatial modeling for water quality assessment
por: Nikitin, Artyom, et al.
Publicado: (2021) -
Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data
por: Koldasbayeva, Diana, et al.
Publicado: (2022)