Cargando…
Land-Use and Land-Cover Classification in Semi-Arid Areas from Medium-Resolution Remote-Sensing Imagery: A Deep Learning Approach
Detailed Land-Use and Land-Cover (LULC) information is of pivotal importance in, e.g., urban/rural planning, disaster management, and climate change adaptation. Recently, Deep Learning (DL) has emerged as a paradigm shift for LULC classification. To date, little research has focused on using DL meth...
Autores principales: | Ali, Kamran, Johnson, Brian A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695710/ https://www.ncbi.nlm.nih.gov/pubmed/36433346 http://dx.doi.org/10.3390/s22228750 |
Ejemplares similares
-
A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery
por: Jiang, Dong, et al.
Publicado: (2012) -
Effective Key Parameter Determination for an Automatic Approach to Land Cover Classification Based on Multispectral Remote Sensing Imagery
por: Wang, Yong, et al.
Publicado: (2013) -
Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery
por: Zhang, Pengbin, et al.
Publicado: (2018) -
Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data
por: Li, Runxiang, et al.
Publicado: (2023) -
Application of High-Resolution Remote-Sensing Data for Land Use Land Cover Mapping of University Campus
por: Dharmawan, Irwan Ary, et al.
Publicado: (2021)