Cargando…

Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha

Human parvovirus B19 (HPV B19) is pathogenic to human, which can cause fifth disease, transient aplastic crisis, arthritis, myocarditis, autoimmune disorders, hydrops fetalis, and so on. Currently, no approved vaccines or antiviral drugs are available against HPV B19, and thus the development of eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Shuai, Wang, Qingqing, Jin, Yuqin, Zhang, Xuefeng, Liu, Zhaoming, Chen, Shi, Wu, Hailan, Yang, Sensen, Tang, Fang, Su, Jiguo, Liang, Yu, Zhang, Jing, Li, Qiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695803/
https://www.ncbi.nlm.nih.gov/pubmed/36366508
http://dx.doi.org/10.3390/v14112410
_version_ 1784838154506731520
author Shao, Shuai
Wang, Qingqing
Jin, Yuqin
Zhang, Xuefeng
Liu, Zhaoming
Chen, Shi
Wu, Hailan
Yang, Sensen
Tang, Fang
Su, Jiguo
Liang, Yu
Zhang, Jing
Li, Qiming
author_facet Shao, Shuai
Wang, Qingqing
Jin, Yuqin
Zhang, Xuefeng
Liu, Zhaoming
Chen, Shi
Wu, Hailan
Yang, Sensen
Tang, Fang
Su, Jiguo
Liang, Yu
Zhang, Jing
Li, Qiming
author_sort Shao, Shuai
collection PubMed
description Human parvovirus B19 (HPV B19) is pathogenic to human, which can cause fifth disease, transient aplastic crisis, arthritis, myocarditis, autoimmune disorders, hydrops fetalis, and so on. Currently, no approved vaccines or antiviral drugs are available against HPV B19, and thus the development of effective vaccines is needed. The capsid of HPV B19 is composed of two types of proteins, i.e., the major capsid protein VP2 and the minor protein VP1. Previous experimental studies have shown that the dominant immune responses against HPV B19 are elicited by VP1, especially the unique region on the N-terminus of VP1. It has been found that VP2 alone or VP2 and VP1 together can assemble into virus-like particle (VLP). The VLP structure formed by VP2 has been resolved, however, the location of VP1 in the capsid, especially the location of VP1 unique region with strong immunogenicity, is still not clear. In the present work, using the Hansenula polymorpha expression system developed by our laboratory, two kinds of recombinant HPV B19 VLPs were expressed, i.e., the VLP co-assembled by VP1 and VP2 (VP1/VP2 VLP) and the VLP whose VP1 content was improved (VP1h/VP2 VLP). The expression, purity, and morphology of these two VLPs were characterized, and then their immunogenic properties were investigated and compared with those of the VLP containing VP2 alone (VP2 VLP) previously developed by our group. Furthermore, the location of the VP1 unique region in the VLPs was determined by using the immunogold electron microscopy (IGEM). Our experimental results show that the VP1h/VP2 VLP elicits a stronger neutralization against the HPV B19 than VP2 and VP1/VP2 VLPs, which implies that the increase of VP1 content significantly improves the level of neutralizing antibodies. In addition, the IGEM observations suggest that the unique region of VP1 may be located inside the recombinant VLP. The VLPs recombinantly expressed by our Hansenula polymorpha system may serve as a promising candidate immunogen for HPV B19 vaccine development.
format Online
Article
Text
id pubmed-9695803
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96958032022-11-26 Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha Shao, Shuai Wang, Qingqing Jin, Yuqin Zhang, Xuefeng Liu, Zhaoming Chen, Shi Wu, Hailan Yang, Sensen Tang, Fang Su, Jiguo Liang, Yu Zhang, Jing Li, Qiming Viruses Article Human parvovirus B19 (HPV B19) is pathogenic to human, which can cause fifth disease, transient aplastic crisis, arthritis, myocarditis, autoimmune disorders, hydrops fetalis, and so on. Currently, no approved vaccines or antiviral drugs are available against HPV B19, and thus the development of effective vaccines is needed. The capsid of HPV B19 is composed of two types of proteins, i.e., the major capsid protein VP2 and the minor protein VP1. Previous experimental studies have shown that the dominant immune responses against HPV B19 are elicited by VP1, especially the unique region on the N-terminus of VP1. It has been found that VP2 alone or VP2 and VP1 together can assemble into virus-like particle (VLP). The VLP structure formed by VP2 has been resolved, however, the location of VP1 in the capsid, especially the location of VP1 unique region with strong immunogenicity, is still not clear. In the present work, using the Hansenula polymorpha expression system developed by our laboratory, two kinds of recombinant HPV B19 VLPs were expressed, i.e., the VLP co-assembled by VP1 and VP2 (VP1/VP2 VLP) and the VLP whose VP1 content was improved (VP1h/VP2 VLP). The expression, purity, and morphology of these two VLPs were characterized, and then their immunogenic properties were investigated and compared with those of the VLP containing VP2 alone (VP2 VLP) previously developed by our group. Furthermore, the location of the VP1 unique region in the VLPs was determined by using the immunogold electron microscopy (IGEM). Our experimental results show that the VP1h/VP2 VLP elicits a stronger neutralization against the HPV B19 than VP2 and VP1/VP2 VLPs, which implies that the increase of VP1 content significantly improves the level of neutralizing antibodies. In addition, the IGEM observations suggest that the unique region of VP1 may be located inside the recombinant VLP. The VLPs recombinantly expressed by our Hansenula polymorpha system may serve as a promising candidate immunogen for HPV B19 vaccine development. MDPI 2022-10-30 /pmc/articles/PMC9695803/ /pubmed/36366508 http://dx.doi.org/10.3390/v14112410 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shao, Shuai
Wang, Qingqing
Jin, Yuqin
Zhang, Xuefeng
Liu, Zhaoming
Chen, Shi
Wu, Hailan
Yang, Sensen
Tang, Fang
Su, Jiguo
Liang, Yu
Zhang, Jing
Li, Qiming
Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title_full Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title_fullStr Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title_full_unstemmed Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title_short Recombinant Virus-like Particles of Human Parvovirus B19 with the Internal Location of VP1 Unique Region Produced by Hansenula polymorpha
title_sort recombinant virus-like particles of human parvovirus b19 with the internal location of vp1 unique region produced by hansenula polymorpha
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695803/
https://www.ncbi.nlm.nih.gov/pubmed/36366508
http://dx.doi.org/10.3390/v14112410
work_keys_str_mv AT shaoshuai recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT wangqingqing recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT jinyuqin recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT zhangxuefeng recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT liuzhaoming recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT chenshi recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT wuhailan recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT yangsensen recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT tangfang recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT sujiguo recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT liangyu recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT zhangjing recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha
AT liqiming recombinantviruslikeparticlesofhumanparvovirusb19withtheinternallocationofvp1uniqueregionproducedbyhansenulapolymorpha