Cargando…
Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification
Periodical vision-based inspection is a principal form of structural health monitoring (SHM) technique. Over the last decades, vision-based artificial intelligence (AI) has successfully facilitated an effortless inspection system owing to its exceptional ability of accuracy of defects’ pattern recog...
Autores principales: | Arafin, Palisa, Issa, Anas, Billah, A. H. M. Muntasir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695848/ https://www.ncbi.nlm.nih.gov/pubmed/36433318 http://dx.doi.org/10.3390/s22228714 |
Ejemplares similares
-
Multilabel Image Classification Based Fresh Concrete Mix Proportion Monitoring Using Improved Convolutional Neural Network
por: Yang, Han, et al.
Publicado: (2020) -
Detection of Flaws in Concrete Using Ultrasonic Tomography and Convolutional Neural Networks
por: Słoński, Marek, et al.
Publicado: (2020) -
Convolutional neural networks improve fungal classification
por: Vu, Duong, et al.
Publicado: (2020) -
Multi-view classification with convolutional neural networks
por: Seeland, Marco, et al.
Publicado: (2021) -
An Automated Image-Based Multivariant Concrete Defect Recognition Using a Convolutional Neural Network with an Integrated Pooling Module
por: Kim, Bubryur, et al.
Publicado: (2022)