Cargando…

Formulation of the Alpha Sliding Innovation Filter: A Robust Linear Estimation Strategy

In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and...

Descripción completa

Detalles Bibliográficos
Autores principales: AlShabi, Mohammad, Gadsden, Stephen Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695894/
https://www.ncbi.nlm.nih.gov/pubmed/36433524
http://dx.doi.org/10.3390/s22228927
Descripción
Sumario:In this paper, a new filter referred to as the alpha sliding innovation filter (ASIF) is presented. The sliding innovation filter (SIF) is a newly developed estimation strategy that uses innovation or measurement error as a switching hyperplane. It is a sub-optimal filter that provides a robust and stable estimate. In this paper, the SIF is reformulated by including a forgetting factor, which significantly improves estimation performance. The proposed ASIF is applied to several systems including a first-order thermometer, a second-order spring-mass-damper, and a third-order electrohydrostatic actuator (EHA) that was built for experimentation. The proposed ASIF provides an improvement in estimation accuracy while maintaining robustness to modeling uncertainties and disturbances.