Cargando…
Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy
In recent years, with the development of deep learning methods, hand pose estimation based on monocular RGB images has made great progress. However, insufficient labeled training datasets remain an important bottleneck for hand pose estimation. Because synthetic datasets can acquire a large number o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695997/ https://www.ncbi.nlm.nih.gov/pubmed/36433440 http://dx.doi.org/10.3390/s22228843 |
_version_ | 1784838205341696000 |
---|---|
author | Jin, Rui Yang, Jianyu |
author_facet | Jin, Rui Yang, Jianyu |
author_sort | Jin, Rui |
collection | PubMed |
description | In recent years, with the development of deep learning methods, hand pose estimation based on monocular RGB images has made great progress. However, insufficient labeled training datasets remain an important bottleneck for hand pose estimation. Because synthetic datasets can acquire a large number of images with precise annotations, existing methods address this problem by using data from easily accessible synthetic datasets. Domain adaptation is a method for transferring knowledge from a labeled source domain to an unlabeled target domain. However, many domain adaptation methods fail to achieve good results in realistic datasets due to the domain gap. In this paper, we design a self-looping adversarial training strategy to reduce the domain gap between synthetic and realistic domains. Specifically, we use a multi-branch structure. Then, a new adversarial training strategy we designed for the regression task is introduced to reduce the size of the output space. As such, our model can reduce the domain gap and thus improve the prediction performance of the model. The experiments using H3D and STB datasets show that our method significantly outperforms state-of-the-art domain adaptive methods. |
format | Online Article Text |
id | pubmed-9695997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96959972022-11-26 Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy Jin, Rui Yang, Jianyu Sensors (Basel) Article In recent years, with the development of deep learning methods, hand pose estimation based on monocular RGB images has made great progress. However, insufficient labeled training datasets remain an important bottleneck for hand pose estimation. Because synthetic datasets can acquire a large number of images with precise annotations, existing methods address this problem by using data from easily accessible synthetic datasets. Domain adaptation is a method for transferring knowledge from a labeled source domain to an unlabeled target domain. However, many domain adaptation methods fail to achieve good results in realistic datasets due to the domain gap. In this paper, we design a self-looping adversarial training strategy to reduce the domain gap between synthetic and realistic domains. Specifically, we use a multi-branch structure. Then, a new adversarial training strategy we designed for the regression task is introduced to reduce the size of the output space. As such, our model can reduce the domain gap and thus improve the prediction performance of the model. The experiments using H3D and STB datasets show that our method significantly outperforms state-of-the-art domain adaptive methods. MDPI 2022-11-15 /pmc/articles/PMC9695997/ /pubmed/36433440 http://dx.doi.org/10.3390/s22228843 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jin, Rui Yang, Jianyu Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title | Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title_full | Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title_fullStr | Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title_full_unstemmed | Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title_short | Domain Adaptive Hand Pose Estimation Based on Self-Looping Adversarial Training Strategy |
title_sort | domain adaptive hand pose estimation based on self-looping adversarial training strategy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9695997/ https://www.ncbi.nlm.nih.gov/pubmed/36433440 http://dx.doi.org/10.3390/s22228843 |
work_keys_str_mv | AT jinrui domainadaptivehandposeestimationbasedonselfloopingadversarialtrainingstrategy AT yangjianyu domainadaptivehandposeestimationbasedonselfloopingadversarialtrainingstrategy |