Cargando…
Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis
Nanoparticle-based drug delivery systems (DDS) have been developed as effective diagnostic and low-dose imaging agents. Nano-imaging agents with particles greater than 100 nm are difficult to accumulate in pancreatic cancer cells, making high-intensity imaging of pancreatic cancer challenging. Pepti...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696042/ https://www.ncbi.nlm.nih.gov/pubmed/36365217 http://dx.doi.org/10.3390/pharmaceutics14112400 |
_version_ | 1784838217799827456 |
---|---|
author | Kimura, Atsushi Arai, Tadashi Ueno, Miho Oyama, Kotaro Yu, Hao Yamashita, Shinichi Otome, Yudai Taguchi, Mitsumasa |
author_facet | Kimura, Atsushi Arai, Tadashi Ueno, Miho Oyama, Kotaro Yu, Hao Yamashita, Shinichi Otome, Yudai Taguchi, Mitsumasa |
author_sort | Kimura, Atsushi |
collection | PubMed |
description | Nanoparticle-based drug delivery systems (DDS) have been developed as effective diagnostic and low-dose imaging agents. Nano-imaging agents with particles greater than 100 nm are difficult to accumulate in pancreatic cancer cells, making high-intensity imaging of pancreatic cancer challenging. Peptides composed of histidine and glycine were designed and synthesized. Additionally, aqueous peptide solutions were irradiated with γ-rays to produce peptide nanogels with an average size of 25–53 nm. The mechanisms underlying radiation-mediated peptide crosslinking were investigated by simulating peptide particle formation based on rate constants. The rate constants for reactions between peptides and reactive species produced by water radiolysis were measured using pulse radiolysis. HGGGHGGGH (H9, H—histidine; G—glycine) particles exhibited a smaller size, as well as high formation yield, stability, and biodegradability. These particles were labeled with fluorescent dye to change their negative surface potential and enhance their accumulation in pancreatic cancer cells. Fluorescent-labeled H9 particles accumulated in PANC1 human pancreatic cancer cells, demonstrating that these particles are effective nano-imaging agents for intractable cancers. |
format | Online Article Text |
id | pubmed-9696042 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96960422022-11-26 Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis Kimura, Atsushi Arai, Tadashi Ueno, Miho Oyama, Kotaro Yu, Hao Yamashita, Shinichi Otome, Yudai Taguchi, Mitsumasa Pharmaceutics Article Nanoparticle-based drug delivery systems (DDS) have been developed as effective diagnostic and low-dose imaging agents. Nano-imaging agents with particles greater than 100 nm are difficult to accumulate in pancreatic cancer cells, making high-intensity imaging of pancreatic cancer challenging. Peptides composed of histidine and glycine were designed and synthesized. Additionally, aqueous peptide solutions were irradiated with γ-rays to produce peptide nanogels with an average size of 25–53 nm. The mechanisms underlying radiation-mediated peptide crosslinking were investigated by simulating peptide particle formation based on rate constants. The rate constants for reactions between peptides and reactive species produced by water radiolysis were measured using pulse radiolysis. HGGGHGGGH (H9, H—histidine; G—glycine) particles exhibited a smaller size, as well as high formation yield, stability, and biodegradability. These particles were labeled with fluorescent dye to change their negative surface potential and enhance their accumulation in pancreatic cancer cells. Fluorescent-labeled H9 particles accumulated in PANC1 human pancreatic cancer cells, demonstrating that these particles are effective nano-imaging agents for intractable cancers. MDPI 2022-11-07 /pmc/articles/PMC9696042/ /pubmed/36365217 http://dx.doi.org/10.3390/pharmaceutics14112400 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kimura, Atsushi Arai, Tadashi Ueno, Miho Oyama, Kotaro Yu, Hao Yamashita, Shinichi Otome, Yudai Taguchi, Mitsumasa Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title | Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title_full | Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title_fullStr | Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title_full_unstemmed | Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title_short | Synthesis of Small Peptide Nanogels Using Radiation Crosslinking as a Platform for Nano-Imaging Agents for Pancreatic Cancer Diagnosis |
title_sort | synthesis of small peptide nanogels using radiation crosslinking as a platform for nano-imaging agents for pancreatic cancer diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696042/ https://www.ncbi.nlm.nih.gov/pubmed/36365217 http://dx.doi.org/10.3390/pharmaceutics14112400 |
work_keys_str_mv | AT kimuraatsushi synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT araitadashi synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT uenomiho synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT oyamakotaro synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT yuhao synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT yamashitashinichi synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT otomeyudai synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis AT taguchimitsumasa synthesisofsmallpeptidenanogelsusingradiationcrosslinkingasaplatformfornanoimagingagentsforpancreaticcancerdiagnosis |