Cargando…

Surface Water Processes Influencing Alterations in Pharmaceutical Chemical Composition following Wastewater Discharge into a Freshwater Estuary

The tidal freshwater Potomac River (TFPR) in the metropolitan Washington, DC region receives wastewater discharge from eight major wastewater treatment plants with the potential to impact water quality. A total of 85 pharmaceutical chemicals and personal care products (PPCPs) were analyzed in surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: Foster, Gregory, Leahigh, Arion, Huff, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696070/
https://www.ncbi.nlm.nih.gov/pubmed/36422910
http://dx.doi.org/10.3390/toxics10110702
Descripción
Sumario:The tidal freshwater Potomac River (TFPR) in the metropolitan Washington, DC region receives wastewater discharge from eight major wastewater treatment plants with the potential to impact water quality. A total of 85 pharmaceutical chemicals and personal care products (PPCPs) were analyzed in surface water and sediments using solid-phase extraction and QuEChERS, respectively, in conjunction with liquid-chromatography tandem mass spectrometry-multiple reaction monitoring quantitation (LC-MS/MS-MRM). A total of 52 PPCPs were quantified in both surface water and sediment. The most frequently quantified PPCPs in water included caffeine, fexofenadine, nicotine, sulfamethoxazole, hydrochlorothiazide, MDA, desvenlafaxine, and metoprolol ranging from 10 to 360 ng/L, and in sediment included diphenhydramine, escitalopram, desvenlafaxine, fexofenadine, sertraline and triclocarban ranging from 20 to 120 ng/g (dry weight). Comparisons of PPCP constituents in WTP discharge and adjacent surface water showed altered compositions reflecting dispersal and transformation processes acted quickly following contact of effluent with surface water. Although the PPCPs were present at their greatest concentrations in surface water near the WTP discharge zones, PPCP concentrations rapidly attenuated yielding mainstem TFPR concentrations relatively consistent along the freshwater reach of the tidal range in the estuary. The PPCP concentrations in sediment maximized in the tributary shoals, but also decreased in the mainstem TFPR similarly to surface water. Compositional analysis showed sorption to geosolids was the most important factor in the loss of PPCPs following WTP discharge in the tributary embayments.