Cargando…

Dental Lesion Segmentation Using an Improved ICNet Network with Attention

Precise segmentation of tooth lesions is critical to creation of an intelligent tooth lesion detection system. As a solution to the problem that tooth lesions are similar to normal tooth tissues and difficult to segment, an improved segmentation method of the image cascade network (ICNet) network is...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Tian, Zhou, Xinlei, Yang, Jiayi, Meng, Boyang, Qian, Jiali, Zhang, Jiehui, Ge, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9696071/
https://www.ncbi.nlm.nih.gov/pubmed/36363941
http://dx.doi.org/10.3390/mi13111920
Descripción
Sumario:Precise segmentation of tooth lesions is critical to creation of an intelligent tooth lesion detection system. As a solution to the problem that tooth lesions are similar to normal tooth tissues and difficult to segment, an improved segmentation method of the image cascade network (ICNet) network is proposed to segment various lesion types, such as calculus, gingivitis, and tartar. First, the ICNet network model is used to achieve real-time segmentation of lesions. Second, the Convolutional Block Attention Module (CBAM) is integrated into the ICNet network structure, and large-size convolutions in the spatial attention module are replaced with layered dilated convolutions to enhance the relevant features while suppressing useless features and solve the problem of inaccurate lesion segmentations. Finally, part of the convolution in the network model is replaced with an asymmetric convolution to reduce the calculations added by the attention module. Experimental results show that compared with Fully Convolutional Networks (FCN), U-Net, SegNet, and other segmentation algorithms, our method has a significant improvement in the segmentation effect, and the image processing frequency is higher, which satisfies the real-time requirements of tooth lesion segmentation accuracy.